Correctness Proof of RSA

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
The previous lecture, we have learned the algorithm of using a pair of private and public keys to encrypt and decrypt a message. In this lecture, we will complete the discussion by proving the algorithm's correctness.
We will need some definitions and theorems from number theory.

Definition

Given an integer $p > 0$, define \mathbb{Z}_p as the set $\{0, 1, ..., p - 1\}$.

If $a = b \pmod{p}$, then all the following hold for any integer $c \geq 0$:

\[
\begin{align*}
 a + c &= b + c \pmod{p} \\
 a - c &= b - c \pmod{p} \\
 ac &= bc \pmod{p} \\
 a^c &= b^c \pmod{p}
\end{align*}
\]
Theorem

Let a, p be two integers that are co-prime to each other. Then, there is only a unique integer $x \in \mathbb{Z}_p$ satisfying

$$ax = b \pmod{p}$$

regardless of the value of b.

The proof is elementary and left to you.

Example: In \mathbb{Z}_8, $3x = 2$ has a unique $x = 6$.

Corollary

If a and p are co-prime to each other, then $0, a, 2a, ..., (p - 1)a$ are all distinct after modulo p.

Correctness Proof of RSA
Theorem (Fermat’s Little Theorem)

If p is a prime number, for any non-zero $a \in \mathbb{Z}_p$, it holds that $a^{p-1} = 1 \pmod{p}$.

Example: In \mathbb{Z}_5, $1^4 = 1 \pmod{p}$, $2^4 = 1 \pmod{p}$, $3^4 = 1 \pmod{p}$, and $4^4 = 1 \pmod{p}$.

Proof.

By the corollary in Slide 4, we know that $a, 2a, ..., (p-1)a$ after modulo p have a one-one correspondence to the values in $\{1, 2, ..., p-1\}$. Therefore:

$$a \cdot 2a \cdot ... \cdot (p-1)a = (p-1)! \pmod{p}.$$

$$\Rightarrow a^{p-1}(p-1)! = (p-1)! \pmod{p}.$$

The above implies $a^{p-1} = 1 \pmod{p}$. \qed
Theorem (Chinese Remainder Theorem)

Let \(p \) and \(q \) be two co-prime integers. If \(x = a \pmod{p} \) and \(x = a \pmod{q} \), then \(x = a \pmod{pq} \).

Example: Since \(37 = 2 \pmod{5} \) and \(37 = 2 \pmod{7} \), we know that \(37 = 2 \pmod{35} \).

Proof.

Let \(b = x \pmod{pq} \). We will prove \(b = a \). Note that \(b < pq \).

First observe that because \(x = a \pmod{p} \), we know \(b = a \pmod{p} \). Similarly, \(b = a \pmod{q} \). Hence, we can write \(b = pt_1 + a = qt_2 + a \) for some integers \(t_1, t_2 \). This means that \(pt_1 = qt_2 \), and they are a common multiple of \(p \) and \(q \). However, as \(p \) and \(q \) are co-prime, the smallest non-zero common multiple of \(p \) and \(q \) is \(pq \). Given the fact that \(b < pq \), we conclude that \(pt_1 = qt_2 = 0 \). □
Bob carries out the following:

1. Choose two large prime numbers \(p \) and \(q \) randomly.
2. Let \(n = pq \).
3. Let \(\phi = (p - 1)(q - 1) \).
4. Choose a large number \(e \in [2, \phi - 1] \) that is co-prime to \(\phi \).
5. Compute \(d \in [2, \phi - 1] \) such that
 \[
 e \cdot d \equiv 1 \pmod{\phi}
 \]
 There is a unique such \(d \). Furthermore, \(d \) must be co-prime to \(\phi \).
6. Announce to the whole word the pair \((e, n)\), which is his public key.
7. Keep \(d \) secret to himself, which together with \(n \) forms his private key.
We now prove the statement at line 5 of the previous slide:

- There is a unique such d.

Proof.
Follows directly from the theorem in Slide 4.

- d must be co-prime to ϕ.

Proof.
Let t be the greatest common divisor of d and ϕ, and suppose $d = c_1 t$ and $\phi = c_2 t$. From $ed = 1 \pmod{\phi}$, we know $ed = c_3 \phi + 1$ for some integer c_3. Hence:

\[
ec_1 t = c_3 c_2 t + 1
\]

\[
\Rightarrow t(ec_1 - c_3 c_2) = 1
\]

which implies $t = 1$.

Correctness Proof of RSA
Encryption: Knowing the public key \((e, n)\) of Bob, Alice wants to send a message \(m \leq n\) to Bob. She converts \(m\) to \(C\) as follows:

\[
C = m^e \pmod{n}
\]

Decryption: Using his private key \((d, n)\), Bob recovers \(m\) from \(C\) as follows:

\[
C^d \pmod{n}
\]
Theorem (RSA’s Correctness)

\[m = C^d \pmod{n}. \]

Proof.

It suffices to prove \(m = C^d \pmod{p} \) and \(m = C^d \pmod{q} \), because they lead to \(m = C^d \pmod{n} \) by the Chinese Remainder Theorem.

First, we prove \(m = C^d \pmod{p} \). From \(C = m^e \pmod{n} \), we know \(C = m^e \pmod{p} \), and hence, \(C^d = m^{ed} \pmod{p} \). As \(ed = 1 \pmod{(p-1)(q-1)} \), we know that \(ed = t(p-1)(q-1) + 1 \) for some integer \(t \). Therefore:

\[
\begin{align*}
m^{ed} &= m \cdot m^{t(p-1)(q-1)} \pmod{p} \\
&= m \cdot (m^{p-1})^{t(q-1)} \pmod{p} \\
&= m \cdot (1)^{t(q-1)} \pmod{p} \\
&= m \pmod{p}
\end{align*}
\]

(Fermat’s Little Theorem)

By symmetry, we also have \(m^{ed} = m \pmod{q} \). \(\square \)