Relational Model 1: Tables and Keys

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong The <u>relational model</u> is the *de facto* standard implemented in all the major database systems. It defines:

- 1 the format by which data should be stored;
- 2 the operations for querying the data.

We will focus on the first aspect in this lecture, leaving the second aspect to the next lecture.

A database conforming to the relational model is called a relational database.

Table, a.k.a. Relation

In a relational database, data are stored in tables.

PROF

pid	name	dept	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
р3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
<i>p</i> 5	Emily	EE	asso	8500
<i>p</i> 6	Frank	CS	full	9000

- Each row is also called a tuple.
- Each column is also called an attribute.
- The relation schema of a table is the set of its attribute names.
 - E.g., the schema of the above table is {pid, name, dept, rank, sal}.

Candidate Key

Definition

In a table, a candidate key is a minimal set K of attributes such that no two tuples are allowed to be equivalent on all the attributes in K.

E.g., in the PROF table of the previous slide, if we set {pid} as a candidate key, then no two tuples can have the same pid.

- A candidate key is designated when the table is created.
- There can be multiple candidate keys.
 - E.g., if you want, you can specify {name} as another candidate key, but do you think it makes sense?
 - How about {dept, rank}?

Discussion

CLASS

cid	title	dept	year
<i>c</i> 1	database	CS	2011
<i>c</i> 2	signal processing	EE	2012

How would you set a candidate key?

As a good practice, every table should have at least a candidate key, a convention that will be enforced in the rest of the course. This implies that no two tuples in the table can be entirely equivalent to each other (think: why?).

Super Key

Definition

In a table, if K is a candidate key, any super set of K is called a super key.

E.g., in the PROF table (pid, name, dept, rank, sal) in Slide 3, $\{pid\}$ is a candidate key. Hence, all the following are super keys:

- {pid}
- {pid, name}
- {pid, dept}
- {pid, rank, sal}
- ...

Lemma

In a table, no two tuples can be equivalent on all the attributes of a super key.

The proof is easy and left to you.

Foreign Key

Definition

Let T and T' be two tables, and K a candidate key in T. If T' also contains K, then K is a foreign key of T' referencing T.

See the next slide for an example.

PROF

\mathbf{pid}	name	dept	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
p3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
p_5	Emily	EE	asso	8500
<i>p</i> 6	Frank	CS	full	9000

CLASS

CLASS				
cid	title	\mathbf{dept}	year	
c1	database	CS	2011	
c2	signal processing	EE	2012	
c1	database	CS	2012	

TEACH

\mathbf{pid}	cid	year
p1	c1	2011
p2	c2	2012
p1	c1	2012

Suppose that PROF has a candidate key $\{pid\}$, and CLASS has a candidate key $\{cid, year\}$. Then:

- {pid} is a foreign key of TEACH referencing PROF.
- {cid, year} is a foreign key of TEACH referencing CLASS.

Discussion

PROF

pid	name	dept	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
p_3	Calvin	CS	full	10000
p_4	Dorothy	EE	asst	5000
p_5	Emily	EE	asso	8500
<i>p</i> 6	Frank	CS	full	9000

CLAS	S
------	---

cid	title	\mathbf{dept}	year
c1	database	$^{\rm CS}$	2011
c2	signal processing	EE	2012
c1	database	CS	2012

TEACH

pid	cid	year
p1	c1	2011
p2	c2	2012
p1	c1	2012

How would you designate a candidate key for TEACH?