# Relational Model 3: Relational Algebra (Part II) 

Yufei Tao<br>Department of Computer Science and Engineering<br>Chinese University of Hong Kong

## Relational Algebra (Review)

We have learned the 6 fundamental operations of relational algebra:

- Rename $\rho$
- Selection $\sigma$
- Projection $\Pi$
- Set union $\cup$
- Set difference -
- Cartesian product $\times$

The operators of the previous slide can express all queries in relational algebra. However, if we rely on only those operators, some queries common in practice require lengthy expressions. To shorten those expressions, people identified the following 4 operators, each of which can be implemented using only the 6 fundamental operators, and can be used to simplify many queries:

- Assignment $\leftarrow$
- Set intersection $\cap$
- Natural join $\bowtie$
- Division :-


## Assignment

Denoted by $T \leftarrow$ [expression]

- where [expression] is a relational algebra expression, and $T$ is a table variable.
- The assignment stores in $T$ the table output by [expression].

Assignments are often used to increase clarity by cutting a long query into multiple steps, each of which can be described by a short line.

## PROF

| pid | name | dept | rank | sal |
| :---: | :---: | :---: | :---: | :---: |
| $p 1$ | Adam | CS | asst | 6000 |
| $p 2$ | Bob | EE | asso | 8000 |
| $p 3$ | Calvin | CS | full | 10000 |
| $p 4$ | Dorothy | EE | asst | 5000 |
| $p 5$ | Emily | EE | asso | 8500 |
| $p 6$ | Frank | CS | full | 9000 |

$$
\begin{aligned}
& T_{1} \leftarrow \Pi_{\mathrm{rank}}\left(\sigma_{\text {sal }} \geq 8000(\mathrm{PROF})\right) \\
& T_{2} \leftarrow \Pi_{\mathrm{rank}}\left(\sigma_{\text {sal }} \geq 9000(\mathrm{PROF})\right) \\
& T_{1}-T_{2}
\end{aligned}
$$

returns:

> | rank |
| :---: |
| asso |

## Set intersection

## Denoted by $T_{1} \cap T_{2}$

- where $T_{1}$ and $T_{2}$ are tables with the same schema.
- The output of the operation is a table $T^{\prime}$ such that
- $T^{\prime}$ has the same schema as $T_{1}$ (and hence, $T_{2}$ ).
- $T^{\prime}$ contains all and only the tuples that appear in both $T_{1}$ and $T_{2}$.

| PROF |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| pid name dept rank sal <br> $p 1$ Adam CS asst 6000 <br> $p 2$ Bob EE asso 8000 <br> $p 3$ Calvin CS full 10000 <br> $p 4$ Dorothy EE asst 5000 <br> $p 5$ Emily EE asso 8500 <br> $p 6$ Frank CS full 9000 |  |  |  |  |  |

$\sigma_{\text {sal }} \geq 8500(\mathrm{PROF}) \cap \sigma_{\text {dept }}=\mathrm{CS}(\mathrm{PROF})$ returns:

| pid | name | dept | rank | sal |
| :---: | :---: | :---: | :---: | :---: |
| $p 3$ | Calvin | CS | full | 10000 |
| $p 6$ | Frank | CS | full | 9000 |

In general:

$$
T_{1} \cap T_{2}=T_{1}-\left(T_{1}-T_{2}\right)
$$

## Natural join

Denoted by $T_{1} \bowtie T_{2}$

- where $T_{1}$ and $T_{2}$ are tables.
- The output of the operation is a table $T^{\prime}$ such that
- The schema of $T^{\prime}$ includes all the distinct columns of $T_{1}$ and $T_{2}$.
- $T^{\prime}$ contains all and only the tuples $t$ satisfying the following conditions:
- $t\left[T_{1}\right]$ belongs to $T_{1}$, where $t\left[T_{1}\right]$ is the part of $t$ after trimming the attributes that do not exist in $T_{1}$;
- $t\left[T_{2}\right]$ belongs to $T_{2}$, where $t\left[T_{2}\right]$ is defined similarly with respect to $T_{2}$.


## PROF

TEACH

| pid | name | dept | rank | sal |
| :---: | :---: | :---: | :---: | :---: |
| $p 1$ | Adam | CS | asst | 6000 |
| $p 2$ | Bob | EE | asso | 8000 |
| $p 3$ | Calvin | CS | full | 10000 |
| $p 4$ | Dorothy | EE | asst | 5000 |
| $p 5$ | Emily | EE | asso | 8500 |


| pid | cid | year |
| :---: | :---: | :---: |
| $p 1$ | $c 1$ | 2011 |
| $p 2$ | $c 2$ | 2012 |
| $p 1$ | $c 2$ | 2012 |

PROF $\bowtie$ TEACH returns:

| pid | name | dept | rank | sal | cid | year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $p 1$ | Adam | CS | asst | 6000 | $c_{1}$ | 2011 |
| $p 2$ | Bob | EE | asso | 8000 | $c_{2}$ | 2012 |
| $p 1$ | Adam | CS | asst | 6000 | $c_{2}$ | 2012 |

In general:

$$
T_{1} \bowtie T_{2}=\Pi_{S}\left(\sigma_{\left.T_{1} \cdot A_{1}=T_{2} \cdot A_{2} \wedge \ldots \wedge T_{1} \cdot A_{d}=T_{2} \cdot A_{d}\left(T_{1} \times T_{2}\right)\right), ~(1)}\right.
$$

where

$$
S=\left(S_{1}-S_{2}\right) \cup\left\{T_{1} \cdot A_{1}, \ldots, T_{1} \cdot A_{d}\right\} \cup\left(S_{2}-S_{1}\right)
$$

where $S_{1}$ and $S_{2}$ are the schemas of $T_{1}$ and $T_{2}$ respectively, and $A_{1}, \ldots, A_{d}$ are the common attributes of $T_{1}$ and $T_{2}$.

## Division

Denoted by $T_{1} \div T_{2}$

- where $T_{1}$ and $T_{2}$ are tables such that the schema of $T_{2}$ is a subset of the schema of $T_{1}$.
- The output of the operation is a table $T^{\prime}$ such that
- The schema of $T^{\prime}$ includes all the columns that are in $T_{1}$, but not in $T_{2}$.
- $T^{\prime}$ contains all and only the tuples $t$ such that:
- for every tuple $t_{2} \in T_{2}, t_{1}=\left(t, t_{2}\right)$ is a tuple in $T_{1}$, where $\left(t, t_{2}\right)$ represents a tuple that concatenates the attributes of $t$ with those of $t_{2}$.

| $T_{1}$ |  |
| :---: | :---: |
| pid | $\mathbf{c i d}$ |
| $p 1$ | $c 1$ |
| $p 1$ | $c 2$ |
| $p 1$ | $c 3$ |
| $p 2$ | $c 2$ |
| $p 2$ | $c 3$ |
| $p 3$ | $c 1$ |
| $p 4$ | $c 1$ |
| $p 4$ | $c 2$ |
| $p 4$ | $c 3$ |$\quad$| $\frac{\mathbf{c i d}}{c 1}$ |
| :---: |
| $c 2$ |
| $c 3$ |

$T_{1} \div T_{2}$ returns:

| pid |
| :---: |
| $p 1$ |
| $p 4$ |

In general:

$$
T_{1} \div T_{2}=\Pi_{s_{1}-S_{2}}\left(T_{1}\right)-\Pi_{S_{1}-S_{2}}\left(\Pi_{S_{1}-S_{2}}\left(T_{1}\right) \times T_{2}-T_{2}\right)
$$

where $S_{1}$ and $S_{2}$ are the schemas of $T_{1}$ and $T_{2}$ respectively.

