## **Proof of the Natural Join Expression**

Let  $T_1$  and  $T_2$  be tables whose schemas are  $T_1$  and  $T_2$ , respectively. Let  $A_1, ..., A_d$  be their common attributes. Prove:

$$T_1 \bowtie T_2 = \prod_S (\sigma_P(T_1 \times T_2))$$

where  $S = (S_1 - S_2) \cup \{T_1.A_1, ..., T_1.A_d\} \cup (S_2 - S_1)$  and  $P = (T_1.A_1 = T_2.A_1 \land ... \land T_1.A_d = T_2.A_d)$ .

**Proof.** Let  $M_1$  be the set of tuples that should appear in  $T_1 \bowtie T_2$  by the definition of natural join:

 $T_1 \bowtie T_2$  contains all and only tuples t such that  $t[T_1] \in T_1$  and  $t[T_2] \in T_2$ , where  $t[T_1]$  ( $t[T_2]$ ) is a tuple obtained from t by keeping only its attributes in  $T_1$  ( $T_2$ ).

Let  $M_2$  be the set of tuples retrieved by  $\Pi_S(\sigma_P(T_1 \times T_2))$ . We will prove  $M_1 \subseteq M_2$  and  $M_2 \subseteq M_1$ , which will establish the fact that  $M_1 = M_2$ .

**Proof of**  $M_1 \subseteq M_2$ . Consider any tuple  $t \in T_1 \bowtie T_2$ . We will show that  $t \in \Pi_S(\sigma_P(T_1 \times T_2))$ . For this purpose, let  $t_1 = t[T_1]$  and  $t_2 = t[T_2]$ . By the definition of natural join, we know that  $t_1 \in T_1$  and  $t_2 \in T_2$ . Hence:

$$(t_1, t_2) \in T_1 \times T_2$$

where  $(t_1, t_2)$  is the tuple obtained by concatenating  $t_1$  and  $t_2$ . Since  $t_1 A_i = t_2 A_i$  for each  $i \in [1, d]$ , we know

$$(t_1, t_2) \in \sigma_P(T_1 \times T_2).$$

Finally, as t is obtained from  $(t_1, t_2)$  by discarding  $t_2.A_1, ..., t_2.A_d$ , we have:

$$t \in \Pi_S(\sigma_P(T_1 \times T_2)).$$

**Proof of**  $M_2 \subseteq M_1$ . Every tuple in  $\Pi_S(\sigma_P(T_1 \times T_2))$  is produced from the following process. First, fix a tuple  $t_1 \in T_1$  and a tuple  $t_2 \in T_2$ . Concatenate them to obtain a tuple  $(t_1, t_2) \in T_1 \times T_2$ . Check whether  $t_1.A_i = t_2.A_i$  for every  $i \in [1, d]$ . If yes, we generate a tuple t from  $(t_1, t_2)$  by discarding  $t_2.A_1, ..., t_2.A_d$ .

It suffices to prove that  $t[T_1] \in T_1$  and  $t[T_2] \in T_2$ , namely,  $t \in T_1 \bowtie T_2$  by definition of natural join. This is obvious because  $t_1 = t[T_1]$  and  $t_2 = t[T_2]$ .