
3NF

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

3NF



We have seen in the previous lecture that it is not always possible to have
a BCNF design that is also dependency preserving. In other words,
between BCNF and dependency preserving, we must choose one and
compromise the other.

In practice, people usually hold onto dependency preserving, and give up
BCNF.

Discuss

Why?

3NF



Let F be the set of functional dependencies (FD) we have collected, and
F+ the closure of F .

Definition

A relation R is in 3rd Normal Form (3NF) if F+ has no FD X → A such
that all the following hold:

1 A and X appear in R (i.e., the FD “concerns” R)

2 A /∈ X (i.e., the FD is not trivial)

3 X does not contain any candidate key of R

4 A does not belong to any candidate key of R.

A BCNF table is always in 3NF, but not the vice versa.

3NF



When it is not possible to have a BCNF design that is dependency

preserving, people turn to make sure that all the tables are in 3NF. There

are some very technical reasons (that go beyond the course), but the

following is a good one: it is always possible to produce a 3NF design

that is dependency preserving, as we will see. In fact, one can think of

3NF as a “minimal” relaxation of BCNF to always allow a

dependency-preserving design.

3NF



Example. Consider table SUPERVISE(profId, stuId, fypId) under the set
F of following FDs:

stuId, fypId → profId
profId → fypId

Is the table in 3NF?

Answer. SUPERVISE has candidate keys {stuId, fypId} and {stuId,
profId}. F+ contains:

profId → fypId
profId, stuId → fypId
stuId, fypid → profId

and other trivial FDs. It is now easy to verify that the table is in 3NF.

3NF



Example. Consider attributes A,B,C ,D, and the set F of FDs:

A→ D
AB → C
AD → C
B → C
D → AB

Is R(ABCD) in 3NF?

Answer. R has candidate keys A and D. Then, B → C determines that
R is not in 3NF because:

It concerns R.

It is not trivial.

Its left hand side does not contain any candidate key.

Its right hand side is not contained in any candidate key.

3NF



We now proceed to explain how to carry out table decomposition in a
dependency preserving manner. At a high level, there are two steps:

Simplify the set F of FDs as much as possible

Decompose using the simplified FDs.

3NF



Definition

A set F of FDs is all-regular if all FDs in F are regular (i.e., each FD has
only one attribute on the right).

Example. The set of FDs in the example of Slide 6 is not all-regular. But
it can be easily transformed into the following all-regular set:

A→ D
AB → C
AD → C
B → C
D → A
D → B

3NF



Definition

A regular FD X → A is simpler than another regular FD X ′ → A if
X ⊂ X ′ (note that the two FDs need to have the same right hand side).

Example. A→ C is simpler than AB → C .

3NF



Definition

An all-regular set F of FDs is simplifiable if we can carry out one of the
following without changing its closure:

remove a FD from F

make a FD of F simpler.

3NF



Example. Let F be the set of following FDs on A,B,C ,D:

A→ C
B → C
AB → C

F is simplifiable because AB → C can be removed. More specifically, let

F ′ be the set of the first two FDs; then F ′+ = F+.

3NF



Example. Let F be the set of following FDs on A,B,C ,D:

A→ B
AB → C

F is simplifiable because AB → C can be made simpler as A→ C . More
specifically, let F ′ be the set of the FDs:

A→ B
A→ C

then F ′+ = F+.

3NF



Definition

An all-regular set F of FDs is minimal if it is not simplifiable.

Example. Let F be the set of following FDs on A,B,C ,D:

A→ B
B → C

Then, F is minimal.

3NF



Definition

Let F be an all-regular set of FDs. An all-regular set G of FDs is a
minimal cover of F if

F+ = G+

G is minimal.

Minimal cover is sometimes also called canonical cover.

Example. Let F be the set of following FDs on A,B,C ,D:

A→ B
AB → C

Let G be the set of FDs:

A→ B
A→ C

G is a minimal cover of F .

3NF



3NF Decomposition

We are ready to elaborate on the algorithm for obtaining a 3NF design.

Assume that we have already obtained a design that is a set S of BCNF

tables (a BCNF design is always possible as long as we do not require it

to be dependency preserving). As before, let F be the set of all-regular

FDs we have collected from the underlying application.

3NF



3NF Decomposition

algo (S ,F )
/* output: a set S ′ of 3NF tables which constitute a dependency-
preserving design */

1. G ← a minimal cover of F
2. G ′ ← the set of FDs in G each of which is not preserved in any

table of S
3. S ′ ← S
4. for each FD X → A in G ′

5. add to S ′ a table with schema X ∪ {A}
6. return S ′

3NF



Example. Consider relation R(A,B,C ,D), and the set F of FDs:

A→ D
AB → C
AD → C
B → C
D → A
D → B

Decompose R into 3NF tables.

Answer.

1 R has candidate keys A and D. By the BCNF decomposition
algorithm we learned before, we can decompose R into BCNF tables
S = {R1(BC ),R2(ABD)}.

3NF



2 Compute a minimal cover G of F :

A→ D
A→ C
B → C
D → A
D → B

3 Find G ′, i.e., the set of FDs not preserved in any table of S :

A→ C

4 Add table R3(AC ) into our design.

R1,R2,R3 constitute our final design. In this example, we are lucky that

all final tables are in BCNF. This is not true in general.

3NF


