BMEG3120: Midterm Exam (Fall 2013)

Please write all your solutions in the answer book.
All the following questions are based on the tables below:

- author (aid, aname): This represents a table with name author whose attributes are as shown in the brackets. The underlined is the candidate key. Each tuple represents an author, whose id and name are given by aid and aname, respectively.
- book (bid, title, category): Each tuple represents a book. The attribute category describes the genre of the book (e.g., novel, sci-fi, science, music, ...).
- student (sid, sname, dept): Each tuple represents a student. The attributes' meanings should be self-explanatory.
- write ($\underline{\text { aid, bid) }}$: A tuple means that book bid was written by author aid.
- borrow(sid, bid, checkout-time, return-time): A tuple means that student sid checked out book bid at checkout-time, and returned it at return-time.

All attributes are strings, except checkout-time and return-time, which are integers. A smaller checkout-time represents an earlier timestamp (same for return-time).

Problem $1 \mathbf{(5 0 \%)}$). Give relational algebra queries for the tasks below:

1. (12%) Find the titles of all the books that the student with sid $=$ "s 100 " has ever borrowed.
2. (12%) Find the titles of all the books that have never been borrowed by any student.
3. (14%) Find the title of the book that the student with $\mathrm{sid}=$ " s 100 " has checked out most recently. If the student has never borrowed any books, return an empty table (whose schema is up to you).
4. (12%) Find the names of all students that have borrowed all the books written by the author with aid $=" \mathrm{a} 100$ ".

Solutions.

1. $\Pi_{\text {title }}\left(\right.$ book $\bowtie\left(\sigma_{\text {sid }}=\right.$ " s 100 " $($ borrow $\left.\left.)\right)\right)$
2. $\Pi_{\text {title }}\left(\right.$ book $\bowtie\left(\Pi_{\text {bid }}(\right.$ book $)-\Pi_{\text {bid }}($ borrow $\left.\left.)\right)\right)$
3. $T 1 \leftarrow \sigma_{\text {sid }}=$ "s 100 " (borrow)
$T 2 \leftarrow T 1$
$T 3 \leftarrow \Pi_{T_{1} \text {.bid }}\left(\sigma_{\left.T_{1} \text {.checkout-time }<T_{2} \text {.checkout-time }\left(T_{1} \times T_{2}\right)\right), ~\left({ }^{2}\right)}\right.$
$T_{4} \leftarrow \Pi_{\text {bid }}\left(T_{1}\right)-T_{3}$
$\Pi_{\text {title }}\left(T_{4} \bowtie\right.$ book $)$
4. $T_{1} \leftarrow \Pi_{\text {bid }}\left(\sigma_{\text {aid }}=\right.$ "aloo" $($ write $\left.)\right)$
$T_{2} \leftarrow \Pi_{\text {sid, bid }}$ (borrow)
$\Pi_{\text {sname }}\left(\left(T_{2} \div T_{1}\right) \bowtie\right.$ student $)$

Problem 2 (50\%). Give SQL queries for the tasks below:

1. (10%) Find the titles of all the books that have ever been borrowed by bme students (i.e., dept $=$ 'bme').
2. (10%) Find the number of distinct students that have ever borrowed the book with bid $=$ 'b100'.
3. (10%) Find the titles of all the books that have ever borrowed by students from at least 10 distinct departments.
4. (10\%) Let us define the borrow volume of a student as the number of distinct books s/he has ever borrowed. For each department, display its name (i.e., dept), and the largest borrow volume of its students.
5. (10\%) Find the titles of the 10 books (not necessarily distinct) most recently borrowed by the student with sid $=$ ' $s 100$ '. If the student has borrowed less than 10 books, return the titles of all of them.

Solutions.

1. select title
from book, borrow, student
where book.bid = borrow.bid and borrow.sid = student.sid
and dept = 'bme'
2. select count(distinct sid)
from borrow
where bid $=$ ' $b 100$ '
3. select title
from book, borrow, student
where book.bid $=$ borrow. bid and borrow.sid $=$ student.sid
group by book.bid, title
having count (distinct dept) $>=10$
4. select dept, max(vol)
from (select dept, count (distinct bid) as vol
from student, borrow
where student.sid = borrow.sid
group by student.sid, dept)
group by dept
5. select title
from book, borrow bor1, borrow bor2
where book.bid $=$ bor1.bid and bor1.sid $=$ ' s 100 ' and bor2.sid $=$ ' s 100 '
and bor1.checkout-time $<=$ bor2.checkout-time
group by bor1.bid, title
having count($*$) ≤ 10
