BMEG3120 Final Exam Solutions

Problem 1.

(a) $\Pi_{\text {tname }}\left(\sigma_{\text {pname }}=\right.$ "Michael Jordan" $\left.(P L A Y E R ~ \bowtie R E G I S T E R ~ \bowtie T E A M)\right)$
(b) $\Pi_{\text {pname }}\left(\sigma_{\text {tname }}=\right.$ "Heat" \wedge year $=2012($ PLAYER \bowtie REGISTER \bowtie TEAM $\left.)\right)$
(c)

$$
\begin{aligned}
& \left.T_{1} \leftarrow \sigma_{\text {pname }}=\text { "Michael Jordan" }(\text { PLAYER } \bowtie \text { REGISTER })\right) \\
& \left.T_{2} \leftarrow \sigma_{\text {pname }} \text { "Michael Jordan" }(\text { PLAYER } \bowtie \text { REGISTER })\right) \\
& \Pi_{T_{2} . \text { pname }}\left(\sigma_{T_{1} . t i d=T_{2} . t i d} \wedge T_{1} \text {.year }=T_{2} . \text { year }\left(T_{1} \times T_{2}\right)\right)
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \left.T_{1} \leftarrow \sigma_{\text {pnation="China" }}(\text { PLAYER } \bowtie \text { REGISTER })\right) \\
& T_{2} \leftarrow T_{1} \\
& T_{3} \leftarrow \Pi_{T_{2} \text {.year }}\left(\sigma_{T_{1} \text {.year }<T_{2} \text {.year }}\left(T_{1} \times T_{2}\right)\right) \\
& \Pi_{\text {year }}\left(T_{1}\right)-T_{3}
\end{aligned}
$$

(e)
$T_{1} \leftarrow \Pi_{\text {year }}\left(\sigma_{\text {pname }}=\right.$ "Michael Jordan" $($ PLAYER \bowtie REGISTER $\left.)\right)$
$T_{2} \leftarrow \Pi_{p i d, \text { pname, year }}\left(\sigma_{\text {pname }}\right.$ "Michael Jordan" $($ PLAYER \bowtie REGISTER $\left.)\right)$
$\Pi_{\text {pname }}\left(T_{2} \div T_{1}\right)$

Problem 2.

(a) select pname from PLAYER where nation = 'China'
(b)
select pid, $\min (y e a r), \max (y e a r)$ from REGISTER
group by pid
(c)
select pid from REGISTER
where year $>=1996$ and year $<=2005$
group by pid
having $\operatorname{count}(*)=10$
(d)
select year from REGISTER
where salary > 20000000
group by year
having count(${ }^{*}$) $>=10$
(e)
select pid from (
select pid, sum(salary) as wealth, count(year) as lifetime
from REGISTER
group by pid) as T
where not exists (
select * from T
where wealth $<$ T.wealth and lifetime $>$ T.lifetime)

Problem 3.

Find the pids of all such players p that p made more money in one year (it does not matter which year) than the wealth of every player from Japan.

Problem 4.

(a) profId \rightarrow stuId
(b) stuId \rightarrow projId
(c) projId \rightarrow profId

Problem 5.

(a) $A B D$
(b) From $D \rightarrow A$, we have $C D \rightarrow A C$ by augmentation. By transitivity on $C D \rightarrow A C$ and $A C \rightarrow E$, we have $C D \rightarrow E$.
(c) $A C$ and $D C$
(d) R is not in 3NF. This is because of $A \rightarrow B$, which is not a trivial functional dependency, its left side does not contain any key, and its right side is not included by any key.
(e) No, because the common attribute C of R_{1} and R_{2} is a candidate key of neither. Note that R_{1} has candidate keys $A C$ and $D C$, whereas R_{2} has only one candidate key $C E$.
(f) First, we decompose R using $A \rightarrow B D$ into $R_{1}(A B D)$ and $R_{2}(A C E) . R_{1}$ has candidate keys A and D. R_{2} has only one candidate key $A C$. Both tables are already in BCNF.

