BMEG3120: Exercise List 9

Consider the set F of following functional dependencies¹ on relation R(ABCD):

$$\begin{array}{rcl} AB & \rightarrow & C \\ AB & \rightarrow & D \\ C & \rightarrow & A \\ D & \rightarrow & B \end{array}$$

Answer the following questions.

Problem 1. Is R in BCNF?

Answer. R has candidate keys AB, AD, BC and CD. It is not in BCNF because there are non-trivial FDs like $C \rightarrow A$ whose left hand side does not contain any candidate key.

Problem 2. Is the decomposition of R into $R_1(ABD)$ and $R_2(AC)$ lossless?

Answer. R_1 has candidate keys AB and AD, while R_2 has candidate key C. Since the common attribute A of R_1 and R_2 is not a candidate key of either relation, the decomposition is lossy.

Problem 3. Decompose R into BCNF tables.

Answer. Since $C \to A$ causes R to violate BCNF, we use it to decompose R into $R_1(AC)$ and $R_2(BCD)$. The former is already in BCNF, but the latter is not, due to $D \to B$. Therefore, we use it to further decompose R_2 into $R_3(BD)$ and $R_4(CD)$. R_1 , R_3 and R_4 are our final tables.

Problem 4.** Prove that R does not have any BCNF decomposition that is dependency preserving.

Answer. Let us first write out all the functional dependencies (FD) in $F^+ = \{C \to A, D \to B, AB \to C, AD \to B, BC \to A, CD \to A, CD \to B, ABC \to D, ABD \to C, BCD \to A, and other trivial functional dependencies}.$

Assume for contradiction that there exists a BCNF decomposition that is dependency preserving. Let S be the set of tables in this decomposition, and F' be the set of functional dependencies preserved by S. In other words, $AB \to C \in F'^+$.

We first show that $AB \to C$ is not preserved by any table in S, i.e., no table in S contains A, B and C, simultaneously. Suppose on the contrary that there is a table T that contains A, B and C. Then, there are only two possibilities: T = (ABC) or T = (ABCD). However, in neither case is T in BCNF, and hence, a contradiction.

Since $AB \to C$ is not in F' but it is in F'^+ , it follows that $AB \to C$ can be derived from the FDs in F'. Let $G = \{C \to A, D \to B, AD \to B, CD \to A, CD \to B, \text{ and other trivial FDs}\}$. Note that F' must be a subset of G (the only FDs of F^+ excluded from G are $AB \to C, BC \to A$, $ABC \to D, ABD \to C$, and $BCD \to A$. None of them can be in F' because S has no table containing ABC simultaneously). Hence, $F'^+ \subseteq G^+$. However, $AB \to C$ cannot be derived from G. This means that $AB \to C$ does not belong to F'^+ , and a contradiction.

¹These dependences were taken from Exercise 19.7 in the reference book of this course.