BMEG3120: Exercise List 9

Consider the set F of following functional dependencies ${ }^{1}$ on relation $R(A B C D)$:

$$
\begin{aligned}
A B & \rightarrow C \\
A B & \rightarrow D \\
C & \rightarrow A \\
D & \rightarrow B
\end{aligned}
$$

Answer the following questions.
Problem 1. Is R in BCNF?
Answer. R has candidate keys $A B, A D, B C$ and $C D$. It is not in BCNF because there are non-trivial FDs like $C \rightarrow A$ whose left hand side does not contain any candidate key.

Problem 2. Is the decomposition of R into $R_{1}(A B D)$ and $R_{2}(A C)$ lossless?
Answer. R_{1} has candidate keys $A B$ and $A D$, while R_{2} has candidate key C. Since the common attribute A of R_{1} and R_{2} is not a candidate key of either relation, the decomposition is lossy.

Problem 3. Decompose R into BCNF tables.
Answer. Since $C \rightarrow A$ causes R to violate BCNF, we use it to decompose R into $R_{1}(A C)$ and $R_{2}(B C D)$. The former is already in BCNF, but the latter is not, due to $D \rightarrow B$. Therefore, we use it to further decompose R_{2} into $R_{3}(B D)$ and $R_{4}(C D) . R_{1}, R_{3}$ and R_{4} are our final tables.

Problem 4**. Prove that R does not have any BCNF decomposition that is dependency preserving.

Answer. Let us first write out all the functional dependencies (FD) in $F^{+}=\{C \rightarrow A, D \rightarrow B$, $A B \rightarrow C, A D \rightarrow B, B C \rightarrow A, C D \rightarrow A, C D \rightarrow B, A B C \rightarrow D, A B D \rightarrow C, B C D \rightarrow A$, and other trivial functional dependencies\}.

Assume for contradiction that there exists a BCNF decomposition that is dependency preserving. Let S be the set of tables in this decomposition, and F^{\prime} be the set of functional dependencies preserved by S. In other words, $A B \rightarrow C \in F^{\prime+}$.

We first show that $A B \rightarrow C$ is not preserved by any table in S, i.e., no table in S contains A, B and C, simultaneously. Suppose on the contrary that there is a table T that contains A, B and C. Then, there are only two possibilities: $T=(A B C)$ or $T=(A B C D)$. However, in neither case is T in BCNF, and hence, a contradiction.

Since $A B \rightarrow C$ is not in F^{\prime} but it is in $F^{\prime+}$, it follows that $A B \rightarrow C$ can be derived from the FDs in F^{\prime}. Let $G=\{C \rightarrow A, D \rightarrow B, A D \rightarrow B, C D \rightarrow A, C D \rightarrow B$, and other trivial FDs $\}$. Note that F^{\prime} must be a subset of G (the only FDs of F^{+}excluded from G are $A B \rightarrow C, B C \rightarrow A$, $A B C \rightarrow D, A B D \rightarrow C$, and $B C D \rightarrow A$. None of them can be in F^{\prime} because S has no table containing $A B C$ simultaneously). Hence, $F^{\prime+} \subseteq G^{+}$. However, $A B \rightarrow C$ cannot be derived from G. This means that $A B \rightarrow C$ does not belong to $F^{\prime+}$, and a contradiction.

[^0]
[^0]: ${ }^{1}$ These dependences were taken from Exercise 19.7 in the reference book of this course.

