BMEG3120: Exercise List 8

Consider the set F of the following functional dependencies on attributes A, B, C, D, E, F :

$$
\begin{aligned}
A & \rightarrow B \\
A & \rightarrow C \\
C D & \rightarrow E \\
C D & \rightarrow F \\
B & \rightarrow E
\end{aligned}
$$

Answer the following questions.
Problem 1. Prove $C D \rightarrow E F$ by applying Armstrong's Axioms, i.e., you can use only reflexivity, transitivity, and augmentation.

Answer. Applying augmentation to $C D \rightarrow E$ gives $C D \rightarrow E C D$. Applying augmentation to $C D \rightarrow F$ gives $E C D \rightarrow E F$. Now, by transitivity on $C D \rightarrow E C D$ and $E C D \rightarrow E F$, we get $C D \rightarrow E F$.

Problem 2. Prove $A D \rightarrow E F$ by repeatedly applying Armstrong's Axioms.
Answer. Applying augmentation to $A \rightarrow C$ gives $A D \rightarrow C D$. Applying transitivity on $A D \rightarrow C D$ and $C D \rightarrow E$ gives $A D \rightarrow E$. Similarly, by transitivity on $A D \rightarrow C D$ and $C D \rightarrow F$, we get $A D \rightarrow F$. Given $A D \rightarrow E$ and $A D \rightarrow F$, we can get $A D \rightarrow E F$ following derivation similar to the one in Problem 1.

Problem 3. Prove that $B C \rightarrow F$ cannot be derived from F.
Answer. We utilize the fact that the algorithm discussed in the class for computing the closure of an attribute set has been proven to be correct (by the database people). With the algorithm we get $B C^{+}=\{B, C, E\}$. Since F is not in the closure, $B C \rightarrow F$ is wrong.

Problem 4. Is $A D$ a candidate key of the table $R(A, B, C, D, E)$?
Answer. Yes, because $A D^{+}$includes all attributes, but neither $A^{+}=\{A, B, C, E\}$ nor $D^{+}=\{D\}$ does.

Problem 5. Is $A B$ a candidate key of the table $R(A, B)$?
Answer. No, because $A^{+}=\{A, B\}$.

