BMEG3120: Exercise List 11

Problem 1. Calculate $50^{45} \bmod 1961$.
Answer. $50^{2} \bmod 1961=539$
$50^{4} \bmod 1961=539^{2} \bmod 1961=293$
$50^{8} \bmod 1961=293^{2} \bmod 1961=1526$
$50^{16} \bmod 1961=1526^{2} \bmod 1961=969$
$50^{32} \bmod 1961=969^{2} \bmod 1961=1603$

Therefore, $50^{45} \bmod 1961=50^{32} \cdot 50^{8} \cdot 50^{4} \cdot 50 \bmod 1961=1603 \cdot 1526 \cdot 293 \cdot 50 \bmod 1961=1412$.
Problem 2. Consider an RSA cryptosystem with $p=17, q=13$ (hence, $n=p q=221$), and $e=35$.

- What is the value of d ?
- Let (e, n) be the public key of Alice. If we use it to encrypt a message $m=78$, what is the ciphertext C ?
- Let (d, n) be the private key of Alice. If she receives a ciphertext $C=65$, what is the original message m ?
- If you receive a message $m=93$ from Alice and her digital signature 188 , do you think that this message indeed comes from her?

Answer.

- $\phi=(p-1)(q-1)=192$. d needs to satisfy the equation $35 \cdot d \bmod 192=1$. Hence, $d=11$.
- $C=m^{e} \bmod n=78^{35} \bmod 221=65$.
- $m=C^{d} \bmod n=65^{11} \bmod 221=78$.
- Let $C=188 . C^{e} \bmod n=188^{35} \bmod 221=154$. Since this is different from m, we reject the message.

Problem 3. Suppose that Alice's public key is $(13,77)$. You are a hacker. Suppose that you have intercepted an encrypted message $C=64$ for Alice. Now, break RSA by figuring out the original message.

Answer. We factor 77 into $p=7$ and $q=11$. Hence, we know that $e=13$ and $d=37$. Therefore, Alice's private key is $(37,77)$. We can therefore restore the message $m=C^{d} \bmod 77=64^{37}$ $\bmod 77=15$.

