BMEG3120: Exercise List 10

Consider the set F of following functional dependencies on relation R(ABCDE):

$$\begin{array}{rrrr} AB & \to & C \\ BC & \to & E \\ BD & \to & E \\ C & \to & B \\ D & \to & A \end{array}$$

Answer the following questions.

Problem 1. Can we simplify F into the following set of FDs?

$$\begin{array}{rrrr} A & \to & C \\ BC & \to & E \\ BD & \to & E \\ C & \to & B \\ D & \to & A \end{array}$$

Answer. No, because $A^+ = \{A\}$ according to F, but $A^+ = \{A, C\}$ in the above set of FDs.

Problem 2. Is R in 3NF?

Answer. The following table shows the closures of all attribute sets (if an attribute set is not shown, its closure is $\{A, B, C, D, E\}$):

attribute set	closure
A	A (short form for $\{A\}$)
B	В
C	BCE
D	AD
E	E
AB	ABCE
AC	ABCE
AD	AD
AE	AE
BC	BCE
\underline{BD}	ABCDE
BE	BE
\underline{CD}	ABCDE
CE	BCE
DE	ADE
ABC	ABCE
ABE	ABCE
ACE	ABCE
ADE	ADE
BCE	BCE
ABCE	ABCE

The underlined in the above table are candidate keys. R is not in 3NF due to (for example) $D \to A.$

Problem 3. Compute a minimal cover of *F*.

Answer.

$$\begin{array}{rrrr} AB & \to & C \\ C & \to & B \\ C & \to & E \\ D & \to & A \end{array}$$

Problem 4. Decompose R into 3NF tables.

Answer. We first decompose R into BCNF tables: $R_1(AC)$, $R_2(AD)$, $R_3(BC)$ and $R_4(BDE)$. Since $AB \to C$ and $C \to E$ have not been preserved in any of the tables, we add: $R_5(ABC)$ and $R_6(CE)$. The final design therefore contains: R_2 , R_4 , R_5 and R_6 . Note that R_1 and R_3 are no longer needed because they are already contained by R_5 .