
Lecture Notes: Weight-Balanced B-tree

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

In this lecture, we will study a technique called weight-balancing, which is very important in de-
signing data structures, as we will see in later lectures. We will introduce the technique on the
B-tree, which can be regarded as the EM equivalent of the binary search tree in RAM.

1 B-tree

Structure. Let S be a set of N elements in R. A B-tree T on S is parameterized by two integer
values: a leaf parameter b ≥ B and a branching parameter p ≥ 16. We assume that both b and p
are multiples of 16. Given a node u of T , we denote by sub(u) the subtree of u. All the leaves of
T are at the same level, namely, the length of each root-to-leaf path is the same. Each leaf node,
if it is not the root, contains between b/4 and b elements in S—referred to as leaf elements. Each
element of S is stored in one, and exactly one, leaf.

Consider now an internal node v with child nodes u1, u2, ..., uf . We refer to the value of f as
the fanout of v. If v is not the root, the value of f must satisfy p/4 ≤ f ≤ p; otherwise, it must
hold that f ≥ 2. For each ui (1 ≤ i ≤ f), v stores a routing element ei, which equals the smallest
leaf element in sub(ui). Without loss of generality, suppose that e1, e2, ..., ef are in ascending order.
For each i ∈ [1, f − 1], it must hold that all the leaf elements in sub(ui) be smaller than ei+1.

T has O(N/b) nodes in total, and therefore, occupies O(N/b) space. We say that the leaves of
T are at level 0, and inductively, the parent of a level-i node in T is at level i+1 (i ≥ 0). The total
number of levels is O(logp(N/b)).

We usually set b = B and p = Bc for some constant c ∈ (0, 1]. This ensures that the B-tree
consumes O(N/B) space, and has O(logB N) levels. Such a B-tree can be harnessed to answer a
large variety of queries efficiently. The following are two examples:

• Predecessor search. Given a value q ∈ R, a predecessor query returns the predecessor of q
in S, namely, the largest element in S that is at most q. The predecessor can be found in
O(logB N) I/Os.

• Range reporting. Given an interval I = [x, y], a range query reports all the elements in S ∩ I.
We can answer such a query in O(logB N +K/B) I/Os, where K = |S ∩ I|.

We leave to you to figure out the query algorithms.

Re-balancing Operations. The B-tree supports both insertions and deletions. Before we clarify
the update algorithms, let us first elaborate on two re-balancing operations: split and merge.

Given a leaf/internal node u, we denote by |u| the number of leaf/routing elements in u. We say
that a leaf (or internal) u overflows if |u| > b (or |u| > p, resp.). We will adhere to the constraint
that an overflowing leaf (or internal) node u should always satisfy |u| ≤ 5b/4 (or |u| ≤ 5p/4, resp.).
Denote by parent (u) the parent of u. A split of u is performed as follows:

• Create a new node u′. Move the ⌈|u|/2⌉ largest elements in u over to u′ (note that if a routing
element e is moved to u′, then the child node of u that e corresponds to now becomes a child

1

node of u′). Make u′ a new child at parent (u) (this means that a routing element is added to
parent (u) for u′). If parent (u) does not exist, create a new root with child nodes u and u′.

Let u be a non-root node. If u is a leaf (or internal) node, we say that u underflows if |u| = b/4−1
(or |u| = p/4−1, resp.). Let u′ be a neighboring sibling of u, namely, no routing element in parent(u)
is in between the two routing elements (in parent (u)) corresponding to u and u′, respectively.
Assuming that u′ neither overflows nor underflows, a merge of u, u′ is performed as follows:

• Move all the elements in u′ into u (if u′ is an internal node, this means that all the child
nodes of u′ are now child nodes of u). Remove u′ from the tree, which reduces the fanout of
parent (u) by 1. If parent (u) is the root and has only one child left (which must be u), make
u the new root. If u is a leaf node and |u| ≥ 3b/4, split u; similarly, if u is an internal node
and |u| ≥ 3p/4, split u.

We refer to splits and merges collectively as rebalancing operations. Each such operation can
be carried out in O((b+ p)/B) I/Os at the leaf level, or O(⌈p/B⌉) I/Os at the internal level.

Update. To insert an element e, descend a root-to-leaf path to the leaf node z that should
accommodate e, and add e to z. The insertion finishes if z does not overflow. Otherwise, split z.
The split may leave parent (z) overflowing; in this case, split parent (z), and handle the potential
overflow in the parent of parent(z) in the same way.

To delete an element e, first descend a root-to-leaf path to the leaf node z where e resides,
and then remove e from z. The deletion finishes if either z is the root, or z does not underflow.
Otherwise, merge z with a neighboring sibling (if z has two neighboring siblings, the choice is
arbitrary). We are done if either parent (z) is the root, or parent (z) does not underflow. Otherwise,
merge parent (z) with a neighboring sibling, and handles the parent of parent (z) in the same way.

It is clear from the above discussion that, each insertion/deletion takes at most O((b/B) +
⌈p/B⌉ · logp(N/b)) I/Os.

Remarks. Here are two interesting questions for you to think about:

• If we perform any mixture of N insertions and deletions, how many rebalancing operations
can be triggered? The answer is O(N/b), why?

• Consider a B-tree with b = f = B. Suppose that u and u′ are two nodes at level-ℓ. What
is the largest ratio between the numbers of leaf elements in their subtrees? For example, if
ℓ = 1, the answer is 4.

2 Weight-Balanced B-tree

Structure. Once again, let S be a set of N elements in R. A weight-balanced B-tree [1] T on S is
also parameterized by a leaf parameter b ≥ B and a branching parameter p ≥ 16. We assume that
b and p are multiples of 16. All the leaves of T are at the same level. Each leaf node, if not the
root, contains between b/4 and b elements in S—referred to as leaf elements. Each element of S is
stored in one, and exactly one, leaf.

Define the weight of u—denoted as w(u)—to be the number of leaf elements stored in sub(u)
(i.e., the subtree of u). We say that the leaves of T are at level 0, and inductively, the parent of
a level-i node in T is at level i + 1 (i ≥ 0). Let v be an internal node with child nodes u1, ..., uf .
For each child node ui (1 ≤ i ≤ f), v stores (i) a routing element ei, which equals the smallest leaf
element in sub(ui), and (ii) the value of w(ui). Without loss of generality, suppose that e1, e2, ..., ef

2

are in ascending order. For each i ∈ [1, f − 1], it must hold that all the leaf elements in sub(ui) be
smaller than ei+1.

The following weight-balancing constraint must hold for every non-root node u in T :

If u is at level ℓ, then its weight is between pℓb/4 and pℓb.

We complete the definition of T by requiring the root to have at least 2 child nodes.
You may be wondering: why haven’t we imposed any constraints on the fanout of an internal

node? In fact, we have done so implicitly via the weight-balancing constraint:

Lemma 1. Each internal node has fanout between p/4 and 4p.

Proof. Consider an internal node v at level ℓ with child nodes u1, ..., uf . Clearly, w(v) =
∑f

i=1
w(ui).

The lemma follows from the fact that w(v) ∈ [pℓb/4, pℓb] whereas w(ui) ∈ [pℓ−1b/4, pℓ−1b] for each
i ∈ [1, f].

As a result, T has consumes O(N/b) space, and has height O(logp(N/b)). By setting b = B and
p = Bc for some constant c ∈ (0, 1], T answers predecessor and range queries with the same cost
as a B-tree with the same b and p.

Remark. Let u, u′ be two level-ℓ nodes of T . The weight-balancing constraint says that w(u) and
w(u′) differ by a factor of at most 4. In other words, the subtrees of u, u′ contain roughly the same
number of leaf elements. This is why T is said to be “weight-balanced”.

Rebalancing Operations. We now re-design the split and merge operations for the weight-
balanced B-tree. Given a non-root node u at level ℓ, we say that u overflows if w(u) > pℓb, or
underflows if w(u) = 1

4
pℓb− 1. Given a level-ℓ overflowing node u with w(u) ∈ [7

8
pℓb, 5

4
pℓb], a split

operation is performed as follows:

• Case 1: u is a leaf node. Create a new node u′, and move half of the elements in u to u′.
Update parent(u) accordingly if u is not the root; otherwise, create a new root with child
nodes u, u′. Note that the weights of u and u′ are both in [7

16
b, 5

8
b].

• Case 2: u is an internal node. Suppose that u has child nodes u1, ..., uf . We find the
maximum s satisfying

s
∑

i=1

w(ui) ≤

f
∑

i=s+1

w(ui). (1)

Create a nodes u′ and u′′. Detach u from parent (u), and u1, ..., uf from u. Make u1, ..., us
child nodes of u′, and us+1, ..., uf child nodes of u′′. Make u′, u′′ child nodes of parent (u) if
parent (u) exists; otherwise, create a new node with u′, u′′ as the child nodes.

Next we analyze w(u′) and w(u′′). Clearly, w(u′) =
∑s

i=1
w(ui) and w(u′′) =

∑f
i=s+1

w(ui).

Note that w(u′) and w(u′′) can differ by at most 2pℓ−1b (otherwise, s could have increased
by 1 without violating (1)). Therefore:

w(u′) ∈

[

w(u)

2
− pℓ−1b,

w(u)

2

]

w(u′′) ∈

[

w(u)

2
,
w(u)

2
+ pℓ−1b

]

3

With the fact that w(u) ∈ [7
8
pib, 5

4
pib] and that p ≥ 16, it is easy to obtain:

w(u′) ∈

[

6

16
pℓb,

5

8
pℓb

]

w(u′′) ∈

[

7

16
pℓb,

11

16
pℓb

]

Next, we clarify merge. Given a level-ℓ underflowing node u, and an immediate sibling u′ of u
such that w(u′) ∈ [1

4
pℓb, pℓb], this operation is performed as follows:

• Merge. Create a node ū. Detach all the child nodes of u, u′ from their parents, and make
all of them child nodes of ū. Detach u, u′ from parent (u), and make ū a child of parent (u).
If parent (u) is the root and has only one child left, make ū the new root. Note that at this
moment w(ū) can be as large as 5

4
pℓb− 1. The merge finishes if w(ū) ≤ 7

8
pℓb; otherwise, split

ū.

Update. The description of the update algorithms in Section 1 applies verbatim here. Each update
takes O((b/B) + ⌈p/B⌉ · logp(N/b)) I/Os.

A Crucial Property of Weight Balancing. As we have seen, the WBB-tree has exactly the
same space, update, and even query complexities (for predecessor and range queries) as the B-tree.
So what have we gained? The answer is the following important lemma:

Lemma 2. Let u be a node of a WBB-tree that is created by a split or a merge. Node u will not

underflow or overflow unless Ω(w(u)) leaf elements have been inserted or deleted in sub(u).

Proof. It follows from the above discussion that w(u) ∈ [6

16
pℓb, 11

16
pℓb]. Hence, at least 2

16
pℓb leaf

elements must be deleted in sub(u) for u to underflow, and at least 5

16
pℓb leaf elements must be

inserted in sub(u) for u to overflow.

The above property plays a crucial role in designing many data structures; we will see some
examples in later lectures.

Remark. You may be wondering whether the B-tree in Section 1 also guarantees such a property.
The answer is, as you could have guessed, no. Consider, for example, a B-tree of b = p = B.
Suppose that a level-ℓ node u in the tree has just been produced by a split. Then, in the worst
case, u will be split again after around (B/2)ℓ+1 insertions. On the other hand, a WBB-tree with
b = p = B can control this number to be Θ(Bℓ+1).

References

[1] L. Arge and J. S. Vitter. Optimal dynamic interval management in external memory. In FOCS,
pages 560–569, 1996.

4

