
Lecture Notes: External Range Tree

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

This lecture will discuss the range searching problem. Let P be a set of N points in R
2. Given

an axis-parallel rectangle q, a range query reports all the points of P ∩ q. We want to maintain a
dynamic structure on P to answer range queries efficiently.

We will introduce the external range tree [1] which solves a query in O(logB N +K/B) I/Os,
where K is the number of points reported. It uses O(NB

logN
log logB N) space and can be updated in

O(logB N logN
log logB N) I/Os amortized. One may wonder whether the space can be improved (say to

linearity) while still achieving the query cost O(logB N +K/B) (which, by the way, can be shown
to be optimal using advanced techniques beyond this course). Unfortunately, this has been proved
to be impossible. The space consumption of the external range tree is already asymptotically the
lowest to achieve this query time [2].

1 Structure

The external range tree combines almost all the structures we have discussed previously: the weight-
balanced B-tree, the external interval tree (and hence, also the persistent B-tree), and the external
priority search tree. The base structure is a weight-balanced B-tree T on the x-coordinates of P .
The leaf parameter of T is B, and its branching parameter is set to Θ(logB N). Note that this
is the first time we see a weight-balanced B-tree whose branching parameter depends on N . The
height of the tree is O(loglogB N (N/B)) = O(logN

log logB N).

As before, each node u of T naturally corresponds to a vertical slab σ(u) in R
2. We denote

by P (u) the set of points whose x-coordinates are stored in the subtree of u. In other words,
P (u) = σ(u) ∩ P . If u is a leaf node, P (u) is associated with u and stored in O(1) blocks.

Each internal u is associated with several secondary structures. Let u1, ..., uf be the child nodes
of u. For each child node ui, associate with u two external priority search trees Π❂(u, ui) and
Π❁(u, ui) on P (ui), which support 3-sided range queries whose search regions have the shapes ❂

and ❁, respectively. Furthermore, for each i ∈ [1, f], create a B-tree Ξ(u, ui) on the points of
P (ui) indexing their y-coordinates. Finally, u is also associated with an external interval tree Γ(u)
built on a set S(u) of 1d intervals obtained as follows. For each i ∈ [1, f], let Y1, ..., Yn be the
y-coordinates of the points of P (ui) in ascending order, where n = P (ui). Generate a set Si(u) of
n 1d intervals where the j-th (1 ≤ j ≤ n) equals (Yj−1, Yj] (defining a dummy Y0 = −∞). The
interval carries a pointer to the leaf node of Ξ(u, ui) where the point corresponding to Yj is stored,
so that once (Yj−1, Yj] is retrieved, we can jump to that leaf node in 1 I/O. S(u) is the union of
S1(u), ..., Sf (u).

Clearly, the space of all the secondary structures of an internal node u is O(|P (u)|/B). Hence,
the secondary structures of all the nodes at an internal level of T occupy O(N/B) space in total.
The overall space consumption of the external range tree is therefore O(NB

logN
log logB N).

Supporting an insertion in O(logB N logN
log logB N) amortized I/Os should be quite straightforward

1

at this stage of the course, by observing that all secondary structures are easy to update and utilizing
the properties of the weight-balanced B-tree in a standard way. Resorting to global rebuilding, we
can handle a deletion easily in the same time bound.

2 Query

Given a query with search region q = [x1, x2] × [y1, y2], we first find the lowest node u whose slab
contains q. Then, we will find all the K result points using only the secondary structures of u in
O(logB N +K/B) I/Os.

We will discuss only the case where u is an internal node. Let u1, ..., uf be the child nodes of u.
Suppose that x1 (x2) falls in some σ(α) (σ(β)), where 1 ≤ α < β ≤ f . Clearly, only the points in
P (uα), P (uα+1), ..., P (uβ) can possibly fall in q. We find P (uα)∩ q by performing a 3-sided range
query on Π❁(u, uα) with the search region q ∩ σ(uα), and similarly, find P (uβ)∩ q by performing a
3-sided range query on Π❂(u, uβ). The cost of the two queries is O(logB N +K1/B) where K1 is
the number of points retrieved by them.

It remains to report the qualifying points in P (uα+1), P (uα+2), ..., P (uβ−1). For this purpose,
we search Γ(u) with the value y1, which reports at most one interval from each Si(u) where 1 ≤
i ≤ f . The cost is O(logB N + f/B) = O(logB N) I/Os. Now consider each i ∈ [α+ 1, β − 1], and
let (Yj−1, Yj] be the interval fetched from Si(u). Then, the point p that corresponds to Yj is the
lowest point in P (ui) on or above the horizontal line y = y1. We jump to the leaf node of Ξ(u, ui)
storing p in O(1) I/O, and then scan in Ξ(u, ui) the points of P (ui) in ascending order of their
y-coordinates starting from p, until seeing the first point with a coordinate greater than y2. All the
other points scanned are reported. In total, we spend O(logB N + f +K2/B) = O(logB N +K2/B)
I/Os reporting the points in P (uα+1), P (uα+2), ..., P (uβ−1), where K2 is the number of these
points.

So far the total cost is O(logB N +K1/B+K2/B) = O(logB N +K/B). Note that we have left
out an important detail – how to find u in the first place? Naively, this can be done by traversing at
most a single root-to-leaf path in O(logN

log logB N) I/Os, which, however, is not necessarily O(logB N).
We will fix this later using a path packing method.

3 Path Packing

As mentioned earlier, the height O(logN
log logB N) of T may be ω(logB N), which makes it too expensive

for us to access a complete root-to-leaf path of T . Next, we describe a trick to remedy this issue.
We will assume logB N ≤ B1/3; otherwise, O(logN

log logB N) = O(logB N).
Since our goal is to identify efficiently the lowest node whose slab contains a query rectangle, we

can focus on just the base tree T and ignore all the secondary structures. Let H be the height of T
and h the largest integer such that

∑h
i=0(logB N)i ≤ B. Notice that h ≥ 2 and h = Ω(1

logB logB N).
The observation behind path packing is that using a full block to store an internal node u is wasteful,
because u has at most logB N ≪ B entries. In fact, we can pack as many as

∑h
i=0(logB N)i nodes

in O(1) blocks. A careful look at
∑h

i=0(logB N)i reveals that this is essentially the number of nodes
in a perfect (logB N)-ary tree with h + 1 levels. The observation motivates us to pack multiple
nodes of T into O(1) blocks.

To keep everything conceptually clean, we will leave T untouched but duplicate it into T ′,
except that the nodes of T ′ are stored in a compact manner as follows. Given a node u of T , let
sub(u, h) be the part of T that includes u and all its descendants up to h levels below (i.e., if u is

2

at level x, then sub(u, h) includes its descendants at level x−1, ..., x−h). Call sub(u, h) the h-level
subtree of u.

We pack T into T ′ as follows. First, let u be the root of T . In T ′, sub(u, h) is stored together
in constant blocks. Recursively, for each leaf node v of sub(u, h), we store sub(v, h) in T ′ also using
O(1) blocks, and repeat this until the leaf level of T has been reached. In this way, any root-to-leaf
path of T is stored in O(H/h) = O(logN

log logB N · logB logB N) = O(logB N) blocks in T ′. In other

words, a root-to-leaf path can now be traversed in logarithmic I/Os.
Is the maintenance of T ′ more expensive than that of T ? Fortunately, no. Clearly, T ′ does

not need to be modified unless a node u in T is split. In that case, we can simply rebuild the
entire subtree of u (i.e., the h-level subtree sub(u, h) of u, those of the leaf nodes in sub(u, h), and
recursively on) in O(w(u)/B)) I/Os. In other words, each insertion accounts for only O(H) =
O(logN

log logB N) I/Os of the maintenance of T ′.
We conclude:

Theorem 1. There is a structure on a set of N points in R
2 that occupies O(NB

logN
log logB N) space,

answers a range query in O(logB N +K/B) I/Os, and supports an update in O(logB N logN
log logB N)

amortized I/Os.

References

[1] L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability and optimal range
search indexing. In PODS, pages 346–357, 1999.

[2] J. M. Hellerstein, E. Koutsoupias, D. P. Miranker, C. H. Papadimitriou, and V. Samoladas. On
a model of indexability and its bounds for range queries. JACM, 49(1):35–55, 2002.

3

