
Lecture Notes: Range Searching with Linear Space

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

In this lecture, we will continue our discussion on the range searching problem. Recall that the
input set P consists of N points in R

2. Given an axis-parallel rectangle q, a range query reports all
the points of P ∩ q. We want to maintain a fully dynamic structure on P to answer range queries
efficiently.

We will focus on non-replicating structures [2, 3]. Specifically, consider that each point in P has
an information field (e.g., the menu of a restaurant) of L words, where L = o(B). Given a query,
an algorithm must report the information fields of all the points that fall in the query window. A
non-replicating structure is allowed to use O(N/B) + NL/B space. Note that the term NL/B is
outside the big-O. In other words, the structure can store each information field exactly once, and
on top of that, consume O(N/B) extra space. The external range tree we discussed previous is not
non-replicating (think: why?).

It is known [3] that the best query time of a non-replicating structure is O(
√

NL/B +KL/B)
I/Os. We will introduce two structures that are able to guarantee this cost. The first one, called
the kd-tree [1], is very simple but unfortunately is difficult to update. Then, we will see how to
utilize the kd-tree to design another structure called the O-tree [2], which retains the same query
performance as the kd-tree, and supports an update in O(logB N) I/Os amortized.

For convenience, we will assume L = O(1), namely, each information field requires constant
words to store. Extensions to general L = o(B) are straightforward.

1 Kd-Tree

Structure. The kd-tree is a binary tree T . Let splitdim be a variable whose value equals either
the x- or y-axis. T is built by a function build(P, splitdim) which returns the root of T . If P has
at most B points, the function returns a single node containing all those points. Otherwise, it finds
a line ℓ perpendicular to axis splitdim that divides P into P1 and P2 of equal size. This can be
done in O(|P |/B) I/Os using a “k-selection” algorithm. The function then creates a node r storing
ℓ (which is called the split line of r), and sets the left and right children of r to the nodes returned
by recursively invoking build(P1, alterdim) and build(P2, alterdim), respectively, where alterdim
equals the x-axis if splitdim is the y-axis, and vice versa. The function terminates by returning r.

Figure 1 shows an example assuming B = 1. It is easy to see that every leaf node has at
least B/2 points (think: why?). Hence, T has O(log(N/B)) levels and can be constructed in
O((N/B) log(N/B)) I/Os.

Query. Observe that each node u of T corresponds to a bounding rectangle rec(u) which is the
intersection of all the half-planes implied by the root-to-u path. For example, in Figure 1, the
rectangle of node ℓ3 is the half-plane on the right of ℓ1, whereas that of node h is bounded by
ℓ1, ℓ3, ℓ6 and the x-axis. Given a range query with search region q, we simply access all the nodes
u such that rec(u) intersects q, and report the points covered by q stored in the leaf nodes visited.

1

a
b

c

d
e

f
g

hi
j

k
l

ℓ1

x

y

ℓ2

ℓ3

ℓ4

ℓ5

ℓ6

ℓ7

ℓ8

ℓ9

ℓ10

ℓ11

ℓ1

ℓ3

ℓ7ℓ6ℓ5

ℓ2

ℓ11h ℓ10 eℓ9i ℓ8 a

ℓ4

jk cfgl bd

Figure 1: A kd-tree

ℓ1 ℓ

ℓ3

ℓ4

ℓ1

ℓ3

u1

u2 u3

u5u4

Figure 2: Proof of Lemma 1

Analysis. We will show that the query cost is O(
√

N/B+K/B). Clearly, the nodes accessed can
be divided into two categories: nodes whose bounding rectangles:

1. intersect at least one edge of q;

2. are enclosed by q.

For a node of Category 2, its entire subtree must be visited, with all of its leaf nodes having to be
reported. Hence, the number of nodes of this category is O(K/B). Next, we focus on the nodes of
Category 1.

We prove actually a stronger result:

Lemma 1. The number of nodes whose bounding rectangles intersect any vertical (or horizontal)
line ℓ is at most O(

√

N/B).

Proof. Let f(N) be the maximum number of nodes whose bounding rectangles intersect ℓ among
all the kd-trees with N nodes. Let u1 be the root of any such kd-tree. Assume without loss of
generality that the split line of u1 is perpendicular to the x-axis. Again, without loss of generality,
assume that ℓ is on the right of the split line ℓ1 of u1. Let the right child of u1 be u3 having split
line ℓ3. Let the left and right children of u3 be u4 and u5, respectively. See Figure 2.

Clearly, ℓ intersects rec(u1) and rec(u3), and does not intersect the bounding rectangle of any
node in the left subtree of u1. The subtree of u4 (u5) is a kd-tree with N/4 nodes with the split line

2

of the root being perpendicular to the x-axis. Hence, the number of nodes in that kd-tree whose
bounding rectangles intersect ℓ is at most f(N/4). It follows that

f(N) = 2 + 2f(N/4)

with f(N) = 1 if N ≤ B. Solving the recurrence gives f(N) = O(
√

N/B).

We thus conclude that there are 4 · O(
√

N/B) = O(
√

N/B) nodes of Category 1.

Theorem 1. A kd-tree on a set of N points in R
2 occupies O(N/B) space, answers a range query

in O(
√

N/B +K/B) I/Os, and can be constructed in O(N
B
log2

N
B
) I/Os.

The following follows immediately:

Corollary 1. For some integer N , the kd-tree on a dataset of size O(B log2B N) consumes O(log2B N)
space, answers a query in O(logB N+K/B) I/Os, and can be updated in O(log2B N · log2 logB N) =
O(log3B N) I/Os per insertion and deletion, by re-constructing the tree from scratch after every
update.

2 O-Tree

Next, we will leverage Corollary 1 to design the next structure O-tree. We will learn a technique
called bootstrapping, which utilizes an inefficient structure (such as the kd-tree) to build an efficient
structure.

2.1 Structure

Let N0 be an integer that equals Θ(N), where N is the number of points in the underlying dataset
P . The O-tree takes N0 as a parameter. You may wonder at this point what happens if N has
grown (or shrunk) sufficiently such that N0 = Θ(N) no longer holds. We will see that this can be
dealt with using global rebuilding. Until then, we will assume that N0 = Θ(N) always holds.

Let V be a set of s vertical slabs that partition P into P1, ..., Ps of roughly the same size.
Specifically, we will make sure each Pi (1 ≤ i ≤ s) has between 1

4

√
N0B ·logB N0 and

√
N0B ·logB N0

points. In other words, s = Θ(
√

N0
√

B logB N0

). We use a B-tree V to index the (total order of the) slabs

in V . Number those slabs as 1, ..., s from left to right.
Next let us focus on one particular Pi. We use a set Hi of hi horizontal slabs to partition it

into Pi[1], ..., Pi [hi] of roughly the same size. Specifically, each Pi[j] (1 ≤ j ≤ hi) has between
1
4
B log2B N0 and B log2B N0 points, namely, hi = Θ(

√

N0
√

B logB N0

). The slabs in Hi are indexed by a

B-tree Hi. Number them as 1, ..., hi from bottom to top.
We refer to each set Pi[j] of points as a cell, and manage them with a kd-tree of Corollary 1.

Note that each cell is naturally associated with a rectangle, which is the intersection of the i-th cell
of V and the hi-th cell of Hi.

This completes the description of the O-tree. Since the information field of each point is stored
in only one kd-tree, the O-tree is non-replicating. As for the space consumption, all the kd-trees
occupy O(N/B) space in total. V,H1, ...,Hs together use O(N0

B2 log2
B
N0

) = o(N/B) space. The total

space is therefore linear.

3

2.2 Query

Given a range query with search region q = [x1, x2] × [y1, y2], we first identify α1 (α2) such that
x1 (x2) is covered by the α1-th (α2-th) slab of V . Then, for each i ∈ [α1, α2], identify βi[1] (βi[2])
such that y1 (y2) is covered by the y1-th (y2-th) slab of Hi. We then simply search the kd-trees of
all Pi[j] where α1 ≤ i ≤ α2 and βi[1] ≤ j ≤ βi[2].

Using the relevant B-trees, α1, α2, and the βi[1], βi[2] of all i can be found in O(s logB N) =

O(logB N ·
√

N
√

B logB N
) = O(

√

N/B) I/Os. Regarding the cost on kd-trees, first notice that all the

points in cell Pi[j] where α1 < i < α2 and βi[1] < j < βi[2] must be covered by q. Therefore, the
time of accessing the kd-trees on those cells is O(K/B). The rest of the query cost comes from
the kd-trees on the “boundary cells” whose rectangles intersect an edge of q. Clearly, there can be

at most O(
√

N
√

B logB N
) such kd-trees. By Corollary 1, querying each of them takes O(logB N) cost

(plus the linear output cost). Thus, the overall query overhead is O(
√

N/B +K/B).

2.3 Update

Insertion. To insert a point p, we first identify the cell Pi[j] whose rectangle covers it in O(logB N)
I/Os. Then, we insert p in the kd-tree of that cell in O(log3B N) I/Os.

If Pi[j] has more than γcell = B log2B N0 points, a cell overflow occurs. In this case, we split
the cell by a horizontal line into two cells of the same size, and rebuild their kd-trees in O(γcell

B
·

log2 logB N) I/Os. Note that a new cell has at most 1 + γcell/2 points. Accordingly, we update Hi

in O(logB N) I/Os.
If Pi (i.e., the i-th slab in V) has more than γslab =

√
N0B · logB N0 points, a slab overflow

occurs. In this case, we split Pi into two slabs Pi, Pi+1, and cut each of them horizontally into cells
of size γcell/2 in O(γslab/B) I/Os (think how to do so1). Then, we rebuild the kd-trees of those
cells, as well as Hi and Hi+1, in O(γslab

B
· log2 logB N) I/Os. Note that a new slab has at most

1 + γslab/2 points. Finally, V is updated in O(logB N) I/Os.

Deletion. To delete a point p, we first remove it from the cell Pi[j] it belongs to in O(log3B N)
I/Os. If Pi[j] has less than

γcell
4

points, a cell underflow occurs, in which case we merge it with the
cell above it (or below it, whichever exists). If the resulting cell contains more than 3γcell/4 points,
split it into two of equal size. In this way, we can ensure that a new cell has between 3γcell/8 and
3γcell/4 points. In any case, we rebuild the kd-trees of the new cells in O(log2B N · log2 logB N)
I/Os, and modify Hi in O(logB N) I/Os.

If Pi has less than γslab/4 points, a slab underflow occurs. In this case, we merge Pi with its left
(or right) slab. If the resulting slab has more than 3γslab/4 points, split it into two of equal size,
to guarantee that a new slab has between 3γslab/8 and 3γslab/4 points. In any case, we rebuild the
kd-trees of the new cells in O(γslab

B
· log2 logB N)I/Os, and modify V in O(logB N) I/Os.

Construction. All the cells can be easily obtained in O(N
B
log2

N
B
) I/Os by sorting. After

that, each kd-tree can be constructed in O(γcell
B

log2 logB N) I/Os, rendering the total overhead
of O(N

B
log2 logB N) of building all kd-trees.

Cost. Clearly, if no cell/slab overflow/underflow happens, an update finishes in O(log3B N) I/Os.
A cell overflow/underflow, on the other hand, demands O(γslab

B
· log2 logB N) I/Os. However, since

a new cell requires at least Ω(γslab) updates to incur the next overflow/underflow, each update

1The last cell may have less than γcell/2 points. If it has at least 3γcell/8 points, we leave it there directly.

Otherwise, we merge it with the cell below it to create a cell of size less than 7γcell/8.

4

accounts for only O(log2 logB N) I/Os for a cell overflow/underflow. A similar argument shows that
an update is amortized on O(log2 logB N) I/Os for the cost of remedying a slab overflow/underflow.

We conclude:

Lemma 2. As long as the assumption N0 = Θ(N) holds, there is a non-replicating structure that
consumes linear space, answers a query in O(

√

N/B + K/B) I/Os, and supports an update in
O(log3B N) I/Os amortized. The structure can be built in O(N

B
log2

N
B
) I/Os.

2.4 Global Rebuilding

The assumption N0 = Θ(N) can be removed easily. Suppose that we have rebuilt a new O-tree
by setting N0 to the size N of the current dataset. Then, we handle the next N0/2 updates using
the algorithms of the previous subsection, during which N can range from N0/2 to 3N0/2, and
is therefore Θ(N0). Right after finishing with N0/2 updates, however, we destroy the O-tree, and
construct a fresh one by performing N insertions in O(N log3B N) I/Os. By the standard analysis
of global rebuilding, each update bears only O(log3B N) I/Os amortized. So, now we can claim:

Lemma 3. There is a non-replicating structure that consumes linear space, answers a query in
O(

√

N/B +K/B) I/Os, and supports an update in O(log3B N) I/Os amortized. The structure can
be built in O(N

B
log2

N
B
) I/Os.

2.5 Bootstrapping

We have obtained a linear space structure with the optimal query performance which can be updated
in poly-logarithmic I/Os. This is a significant improvement over the kd-tree. Remember that this
is achieved by using the inferior structure of Corollary 1 to handle small datasets (of size at most
B log2B N)—an idea known as bootstrapping.

Somewhat surprisingly, we can bootstrap again to achieve our desired logarithmic update bound,
by doing (almost) nothing. Observe that Lemma 3 gives us a stronger version of Corollary 1:

Corollary 2. For some integer N , there is a non-replicating structure on a dataset of size O(B log2B N)
consumes O(log2B N) space, answers a query in O(logB N + K/B) I/Os, and can be updated
in O(log3B logB N) I/Os amortized per insertion and deletion. The tree can be constructed in
O(log2B N · log2 logB N) I/Os.

Now, let us implement every cell structure of the O-tree (which was a kd-tree before) as a
structure of Corollary 2. Everything remains the same, except that now an update takes O(logB N+
log3B logB N) = O(logB N) I/Os if no cell/slab overflow/underflow occurs. Therefore, we have
arrived at our ultimate structure:

Theorem 2. There is a non-replicating structure that consumes linear space, answers a query in
O(

√

N/B +K/B) I/Os, and supports an insertion and deletion in O(logB N) I/Os amortized.

Remarks. It is natural to wonder whether we can apply it once more to lower the update time even
further. The answer is negative because by utilizing the structure of Corollary 2 we have already
conquered the bottleneck, which was the expensive update cost of the kd-tree in Corollary 1. The
new bottleneck is the logarithmic cost of finding which cell to update, and cannot be improved any
more.

5

References

[1] J. L. Bentley. Multidimensional binary search trees used for associative searching. CACM,
18(9):509–517, 1975.

[2] K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-replicating index
structures. In ICDT, pages 257–276, 1999.

[3] Y. Tao. Indexability of 2d range search revisited: constant redundancy and weak indivisibility.
In PODS, pages 131–142, 2012.

6

