Lecture Notes: Range Searching with Linear Space

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

In this lecture, we will continue our discussion on the *range searching* problem. Recall that the input set P consists of N points in \mathbb{R}^2 . Given an axis-parallel rectangle q, a *range query* reports all the points of $P \cap q$. We want to maintain a fully dynamic structure on P to answer range queries efficiently.

We will focus on non-replicating structures [2, 3]. Specifically, consider that each point in P has an information field (e.g., the menu of a restaurant) of L words, where L = o(B). Given a query, an algorithm must report the information fields of all the points that fall in the query window. A non-replicating structure is allowed to use O(N/B) + NL/B space. Note that the term NL/B is outside the big-O. In other words, the structure can store each information field exactly once, and on top of that, consume O(N/B) extra space. The external range tree we discussed previous is not non-replicating (think: why?).

It is known [3] that the best query time of a non-replicating structure is $O(\sqrt{NL/B} + KL/B)$ I/Os. We will introduce two structures that are able to guarantee this cost. The first one, called the *kd-tree* [1], is very simple but unfortunately is difficult to update. Then, we will see how to utilize the kd-tree to design another structure called the *O-tree* [2], which retains the same query performance as the kd-tree, and supports an update in $O(\log_B N)$ I/Os amortized.

For convenience, we will assume L = O(1), namely, each information field requires constant words to store. Extensions to general L = o(B) are straightforward.

1 Kd-Tree

Structure. The kd-tree is a binary tree \mathcal{T} . Let *splitdim* be a variable whose value equals either the x- or y-axis. \mathcal{T} is built by a function build(P, splitdim) which returns the root of \mathcal{T} . If P has at most B points, the function returns a single node containing all those points. Otherwise, it finds a line ℓ perpendicular to axis *splitdim* that divides P into P_1 and P_2 of equal size. This can be done in O(|P|/B) I/Os using a "k-selection" algorithm. The function then creates a node r storing ℓ (which is called the *split line* of r), and sets the left and right children of r to the nodes returned by recursively invoking *build*(P_1 , *alterdim*) and *build*(P_2 , *alterdim*), respectively, where *alterdim* equals the x-axis if *splitdim* is the y-axis, and vice versa. The function terminates by returning r.

Figure 1 shows an example assuming B = 1. It is easy to see that every leaf node has at least B/2 points (think: why?). Hence, \mathcal{T} has $O(\log(N/B))$ levels and can be constructed in $O((N/B)\log(N/B))$ I/Os.

Query. Observe that each node u of \mathcal{T} corresponds to a bounding rectangle rec(u) which is the intersection of all the half-planes implied by the root-to-u path. For example, in Figure 1, the rectangle of node ℓ_3 is the half-plane on the right of ℓ_1 , whereas that of node h is bounded by ℓ_1, ℓ_3, ℓ_6 and the x-axis. Given a range query with search region q, we simply access all the nodes u such that rec(u) intersects q, and report the points covered by q stored in the leaf nodes visited.

Figure 2: Proof of Lemma 1

Analysis. We will show that the query cost is $O(\sqrt{N/B} + K/B)$. Clearly, the nodes accessed can be divided into two categories: nodes whose bounding rectangles:

- 1. intersect at least one edge of q;
- 2. are enclosed by q.

For a node of Category 2, its entire subtree must be visited, with all of its leaf nodes having to be reported. Hence, the number of nodes of this category is O(K/B). Next, we focus on the nodes of Category 1.

We prove actually a stronger result:

Lemma 1. The number of nodes whose bounding rectangles intersect any vertical (or horizontal) line ℓ is at most $O(\sqrt{N/B})$.

Proof. Let f(N) be the maximum number of nodes whose bounding rectangles intersect ℓ among all the kd-trees with N nodes. Let u_1 be the root of any such kd-tree. Assume without loss of generality that the split line of u_1 is perpendicular to the x-axis. Again, without loss of generality, assume that ℓ is on the right of the split line ℓ_1 of u_1 . Let the right child of u_1 be u_3 having split line ℓ_3 . Let the left and right children of u_3 be u_4 and u_5 , respectively. See Figure 2.

Clearly, ℓ intersects $rec(u_1)$ and $rec(u_3)$, and does not intersect the bounding rectangle of any node in the left subtree of u_1 . The subtree of u_4 (u_5) is a kd-tree with N/4 nodes with the split line

of the root being perpendicular to the x-axis. Hence, the number of nodes in that kd-tree whose bounding rectangles intersect ℓ is at most f(N/4). It follows that

$$f(N) = 2 + 2f(N/4)$$

with f(N) = 1 if $N \leq B$. Solving the recurrence gives $f(N) = O(\sqrt{N/B})$.

We thus conclude that there are $4 \cdot O(\sqrt{N/B}) = O(\sqrt{N/B})$ nodes of Category 1.

Theorem 1. A kd-tree on a set of N points in \mathbb{R}^2 occupies O(N/B) space, answers a range query in $O(\sqrt{N/B} + K/B)$ I/Os, and can be constructed in $O(\frac{N}{B}\log_2 \frac{N}{B})$ I/Os.

The following follows immediately:

Corollary 1. For some integer N, the kd-tree on a dataset of size $O(B \log_B^2 N)$ consumes $O(\log_B^2 N)$ space, answers a query in $O(\log_B N + K/B)$ I/Os, and can be updated in $O(\log_B^2 N \cdot \log_2 \log_B N) = O(\log_B^3 N)$ I/Os per insertion and deletion, by re-constructing the tree from scratch after every update.

2 O-Tree

Next, we will leverage Corollary 1 to design the next structure O-tree. We will learn a technique called *bootstrapping*, which utilizes an inefficient structure (such as the kd-tree) to build an efficient structure.

2.1 Structure

Let N_0 be an integer that equals $\Theta(N)$, where N is the number of points in the underlying dataset P. The O-tree takes N_0 as a parameter. You may wonder at this point what happens if N has grown (or shrunk) sufficiently such that $N_0 = \Theta(N)$ no longer holds. We will see that this can be dealt with using global rebuilding. Until then, we will assume that $N_0 = \Theta(N)$ always holds.

Let V be a set of s vertical slabs that partition P into $P_1, ..., P_s$ of roughly the same size. Specifically, we will make sure each P_i $(1 \le i \le s)$ has between $\frac{1}{4}\sqrt{N_0B} \cdot \log_B N_0$ and $\sqrt{N_0B} \cdot \log_B N_0$ points. In other words, $s = \Theta(\frac{\sqrt{N_0}}{\sqrt{B}\log_B N_0})$. We use a B-tree V to index the (total order of the) slabs in V. Number those slabs as 1, ..., s from left to right.

Next let us focus on one particular P_i . We use a set H_i of h_i horizontal slabs to partition it into $P_i[1], ..., P_i[h_i]$ of roughly the same size. Specifically, each $P_i[j]$ $(1 \le j \le h_i)$ has between $\frac{1}{4}B \log_B^2 N_0$ and $B \log_B^2 N_0$ points, namely, $h_i = \Theta(\frac{\sqrt{N_0}}{\sqrt{B} \log_B N_0})$. The slabs in H_i are indexed by a B-tree \mathcal{H}_i . Number them as 1, ..., h_i from bottom to top.

We refer to each set $P_i[j]$ of points as a *cell*, and manage them with a kd-tree of Corollary 1. Note that each cell is naturally associated with a rectangle, which is the intersection of the *i*-th cell of V and the h_i -th cell of H_i .

This completes the description of the O-tree. Since the information field of each point is stored in only one kd-tree, the O-tree is non-replicating. As for the space consumption, all the kd-trees occupy O(N/B) space in total. $\mathcal{V}, \mathcal{H}_1, ..., \mathcal{H}_s$ together use $O(\frac{N_0}{B^2 \log_B^2 N_0}) = o(N/B)$ space. The total space is therefore linear.

2.2 Query

Given a range query with search region $q = [x_1, x_2] \times [y_1, y_2]$, we first identify α_1 (α_2) such that x_1 (x_2) is covered by the α_1 -th (α_2 -th) slab of V. Then, for each $i \in [\alpha_1, \alpha_2]$, identify $\beta_i[1]$ ($\beta_i[2]$) such that y_1 (y_2) is covered by the y_1 -th (y_2 -th) slab of H_i . We then simply search the kd-trees of all $P_i[j]$ where $\alpha_1 \leq i \leq \alpha_2$ and $\beta_i[1] \leq j \leq \beta_i[2]$.

Using the relevant B-trees, α_1, α_2 , and the $\beta_i[1], \beta_i[2]$ of all i can be found in $O(s \log_B N) = O(\log_B N \cdot \frac{\sqrt{N}}{\sqrt{B} \log_B N}) = O(\sqrt{N/B})$ I/Os. Regarding the cost on kd-trees, first notice that all the points in cell $P_i[j]$ where $\alpha_1 < i < \alpha_2$ and $\beta_i[1] < j < \beta_i[2]$ must be covered by q. Therefore, the time of accessing the kd-trees on those cells is O(K/B). The rest of the query cost comes from the kd-trees on the "boundary cells" whose rectangles intersect an edge of q. Clearly, there can be at most $O(\frac{\sqrt{N}}{\sqrt{B} \log_B N})$ such kd-trees. By Corollary 1, querying each of them takes $O(\log_B N)$ cost (plus the linear output cost). Thus, the overall query overhead is $O(\sqrt{N/B} + K/B)$.

2.3 Update

Insertion. To insert a point p, we first identify the cell $P_i[j]$ whose rectangle covers it in $O(\log_B N)$ I/Os. Then, we insert p in the kd-tree of that cell in $O(\log_B^3 N)$ I/Os.

If $P_i[j]$ has more than $\gamma_{cell} = B \log_B^2 N_0$ points, a *cell overflow* occurs. In this case, we split the cell by a horizontal line into two cells of the same size, and rebuild their kd-trees in $O(\frac{\gamma_{cell}}{B} \cdot \log_2 \log_B N)$ I/Os. Note that a new cell has at most $1 + \gamma_{cell}/2$ points. Accordingly, we update \mathcal{H}_i in $O(\log_B N)$ I/Os.

If P_i (i.e., the *i*-th slab in V) has more than $\gamma_{slab} = \sqrt{N_0 B} \cdot \log_B N_0$ points, a slab overflow occurs. In this case, we split P_i into two slabs P_i, P_{i+1} , and cut each of them horizontally into cells of size $\gamma_{cell}/2$ in $O(\gamma_{slab}/B)$ I/Os (think how to do so¹). Then, we rebuild the kd-trees of those cells, as well as \mathcal{H}_i and \mathcal{H}_{i+1} , in $O(\frac{\gamma_{slab}}{B} \cdot \log_2 \log_B N)$ I/Os. Note that a new slab has at most $1 + \gamma_{slab}/2$ points. Finally, \mathcal{V} is updated in $O(\log_B N)$ I/Os.

Deletion. To delete a point p, we first remove it from the cell $P_i[j]$ it belongs to in $O(\log_B^3 N)$ I/Os. If $P_i[j]$ has less than $\frac{\gamma_{cell}}{4}$ points, a *cell underflow* occurs, in which case we merge it with the cell above it (or below it, whichever exists). If the resulting cell contains more than $3\gamma_{cell}/4$ points, split it into two of equal size. In this way, we can ensure that a new cell has between $3\gamma_{cell}/8$ and $3\gamma_{cell}/4$ points. In any case, we rebuild the kd-trees of the new cells in $O(\log_B^2 N \cdot \log_2 \log_B N)$ I/Os, and modify \mathcal{H}_i in $O(\log_B N)$ I/Os.

If P_i has less than $\gamma_{slab}/4$ points, a slab underflow occurs. In this case, we merge P_i with its left (or right) slab. If the resulting slab has more than $3\gamma_{slab}/4$ points, split it into two of equal size, to guarantee that a new slab has between $3\gamma_{slab}/8$ and $3\gamma_{slab}/4$ points. In any case, we rebuild the kd-trees of the new cells in $O(\frac{\gamma_{slab}}{B} \cdot \log_2 \log_B N)$ I/Os, and modify \mathcal{V} in $O(\log_B N)$ I/Os.

Construction. All the cells can be easily obtained in $O(\frac{N}{B}\log_2 \frac{N}{B})$ I/Os by sorting. After that, each kd-tree can be constructed in $O(\frac{\gamma_{cell}}{B}\log_2\log_B N)$ I/Os, rendering the total overhead of $O(\frac{N}{B}\log_2\log_B N)$ of building all kd-trees.

Cost. Clearly, if no cell/slab overflow/underflow happens, an update finishes in $O(\log_B^3 N)$ I/Os. A cell overflow/underflow, on the other hand, demands $O(\frac{\gamma_{slab}}{B} \cdot \log_2 \log_B N)$ I/Os. However, since a new cell requires at least $\Omega(\gamma_{slab})$ updates to incur the next overflow/underflow, each update

¹The last cell may have less than $\gamma_{cell}/2$ points. If it has at least $3\gamma_{cell}/8$ points, we leave it there directly. Otherwise, we merge it with the cell below it to create a cell of size less than $7\gamma_{cell}/8$.

accounts for only $O(\log_2 \log_B N)$ I/Os for a cell overflow/underflow. A similar argument shows that an update is amortized on $O(\log_2 \log_B N)$ I/Os for the cost of remedying a slab overflow/underflow.

We conclude:

Lemma 2. As long as the assumption $N_0 = \Theta(N)$ holds, there is a non-replicating structure that consumes linear space, answers a query in $O(\sqrt{N/B} + K/B)$ I/Os, and supports an update in $O(\log_B^3 N)$ I/Os amortized. The structure can be built in $O(\frac{N}{B} \log_2 \frac{N}{B})$ I/Os.

2.4 Global Rebuilding

The assumption $N_0 = \Theta(N)$ can be removed easily. Suppose that we have rebuilt a new O-tree by setting N_0 to the size N of the current dataset. Then, we handle the next $N_0/2$ updates using the algorithms of the previous subsection, during which N can range from $N_0/2$ to $3N_0/2$, and is therefore $\Theta(N_0)$. Right after finishing with $N_0/2$ updates, however, we destroy the O-tree, and construct a fresh one by performing N insertions in $O(N \log_B^3 N)$ I/Os. By the standard analysis of global rebuilding, each update bears only $O(\log_B^3 N)$ I/Os amortized. So, now we can claim:

Lemma 3. There is a non-replicating structure that consumes linear space, answers a query in $O(\sqrt{N/B} + K/B)$ I/Os, and supports an update in $O(\log_B^3 N)$ I/Os amortized. The structure can be built in $O(\frac{N}{B}\log_2 \frac{N}{B})$ I/Os.

2.5 Bootstrapping

We have obtained a linear space structure with the optimal query performance which can be updated in poly-logarithmic I/Os. This is a significant improvement over the kd-tree. Remember that this is achieved by using the inferior structure of Corollary 1 to handle small datasets (of size at most $B \log_B^2 N$)—an idea known as bootstrapping.

Somewhat surprisingly, we can bootstrap again to achieve our desired logarithmic update bound, by doing (almost) nothing. Observe that Lemma 3 gives us a stronger version of Corollary 1:

Corollary 2. For some integer N, there is a non-replicating structure on a dataset of size $O(B \log_B^2 N)$ consumes $O(\log_B^2 N)$ space, answers a query in $O(\log_B N + K/B)$ I/Os, and can be updated in $O(\log_B^3 \log_B N)$ I/Os amortized per insertion and deletion. The tree can be constructed in $O(\log_B^2 N \cdot \log_2 \log_B N)$ I/Os.

Now, let us implement every cell structure of the O-tree (which was a kd-tree before) as a structure of Corollary 2. Everything remains the same, except that now an update takes $O(\log_B N + \log_B^3 \log_B N) = O(\log_B N)$ I/Os if no cell/slab overflow/underflow occurs. Therefore, we have arrived at our ultimate structure:

Theorem 2. There is a non-replicating structure that consumes linear space, answers a query in $O(\sqrt{N/B} + K/B)$ I/Os, and supports an insertion and deletion in $O(\log_B N)$ I/Os amortized.

Remarks. It is natural to wonder whether we can apply it once more to lower the update time even further. The answer is negative because by utilizing the structure of Corollary 2 we have already conquered the bottleneck, which was the expensive update cost of the kd-tree in Corollary 1. The new bottleneck is the logarithmic cost of finding which cell to update, and cannot be improved any more.

References

- J. L. Bentley. Multidimensional binary search trees used for associative searching. CACM, 18(9):509–517, 1975.
- [2] K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-replicating index structures. In *ICDT*, pages 257–276, 1999.
- [3] Y. Tao. Indexability of 2d range search revisited: constant redundancy and weak indivisibility. In *PODS*, pages 131–142, 2012.