Lecture Notes: Range Searching with Linear Space

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

In this lecture, we will continue our discussion on the range searching problem. Recall that the input set P consists of N points in \mathbb{R}^{2}. Given an axis-parallel rectangle q, a range query reports all the points of $P \cap q$. We want to maintain a fully dynamic structure on P to answer range queries efficiently.

We will focus on non-replicating structures [2, 3]. Specifically, consider that each point in P has an information field (e.g., the menu of a restaurant) of L words, where $L=o(B)$. Given a query, an algorithm must report the information fields of all the points that fall in the query window. A non-replicating structure is allowed to use $O(N / B)+N L / B$ space. Note that the term $N L / B$ is outside the big- O. In other words, the structure can store each information field exactly once, and on top of that, consume $O(N / B)$ extra space. The external range tree we discussed previous is not non-replicating (think: why?).

It is known [3] that the best query time of a non-replicating structure is $O(\sqrt{N L / B}+K L / B)$ I/Os. We will introduce two structures that are able to guarantee this cost. The first one, called the $k d$-tree [1], is very simple but unfortunately is difficult to update. Then, we will see how to utilize the kd-tree to design another structure called the O-tree [2], which retains the same query performance as the kd-tree, and supports an update in $O\left(\log _{B} N\right)$ I/Os amortized.

For convenience, we will assume $L=O(1)$, namely, each information field requires constant words to store. Extensions to general $L=o(B)$ are straightforward.

1 Kd-Tree

Structure. The kd-tree is a binary tree \mathcal{T}. Let splitdim be a variable whose value equals either the x - or y-axis. \mathcal{T} is built by a function build $(P$, splitdim) which returns the root of \mathcal{T}. If P has at most B points, the function returns a single node containing all those points. Otherwise, it finds a line ℓ perpendicular to axis splitdim that divides P into P_{1} and P_{2} of equal size. This can be done in $O(|P| / B)$ I/Os using a " k-selection" algorithm. The function then creates a node r storing ℓ (which is called the split line of r), and sets the left and right children of r to the nodes returned by recursively invoking build (P_{1}, alterdim) and build(P_{2}, alterdim), respectively, where alterdim equals the x -axis if splitdim is the y -axis, and vice versa. The function terminates by returning r.

Figure 1 shows an example assuming $B=1$. It is easy to see that every leaf node has at least $B / 2$ points (think: why?). Hence, \mathcal{T} has $O(\log (N / B))$ levels and can be constructed in $O((N / B) \log (N / B))$ I/Os.
Query. Observe that each node u of \mathcal{T} corresponds to a bounding rectangle rec (u) which is the intersection of all the half-planes implied by the root-to- u path. For example, in Figure 1, the rectangle of node ℓ_{3} is the half-plane on the right of ℓ_{1}, whereas that of node h is bounded by $\ell_{1}, \ell_{3}, \ell_{6}$ and the x-axis. Given a range query with search region q, we simply access all the nodes u such that $\operatorname{rec}(u)$ intersects q, and report the points covered by q stored in the leaf nodes visited.

Figure 1: A kd-tree

Figure 2: Proof of Lemma 1

Analysis. We will show that the query cost is $O(\sqrt{N / B}+K / B)$. Clearly, the nodes accessed can be divided into two categories: nodes whose bounding rectangles:

1. intersect at least one edge of q;
2. are enclosed by q.

For a node of Category 2, its entire subtree must be visited, with all of its leaf nodes having to be reported. Hence, the number of nodes of this category is $O(K / B)$. Next, we focus on the nodes of Category 1.

We prove actually a stronger result:
Lemma 1. The number of nodes whose bounding rectangles intersect any vertical (or horizontal) line ℓ is at most $O(\sqrt{N / B})$.

Proof. Let $f(N)$ be the maximum number of nodes whose bounding rectangles intersect ℓ among all the kd-trees with N nodes. Let u_{1} be the root of any such kd-tree. Assume without loss of generality that the split line of u_{1} is perpendicular to the x-axis. Again, without loss of generality, assume that ℓ is on the right of the split line ℓ_{1} of u_{1}. Let the right child of u_{1} be u_{3} having split line ℓ_{3}. Let the left and right children of u_{3} be u_{4} and u_{5}, respectively. See Figure 2 .

Clearly, ℓ intersects $\operatorname{rec}\left(u_{1}\right)$ and $\operatorname{rec}\left(u_{3}\right)$, and does not intersect the bounding rectangle of any node in the left subtree of u_{1}. The subtree of $u_{4}\left(u_{5}\right)$ is a kd-tree with $N / 4$ nodes with the split line
of the root being perpendicular to the x-axis. Hence, the number of nodes in that kd-tree whose bounding rectangles intersect ℓ is at most $f(N / 4)$. It follows that

$$
f(N)=2+2 f(N / 4)
$$

with $f(N)=1$ if $N \leq B$. Solving the recurrence gives $f(N)=O(\sqrt{N / B})$.
We thus conclude that there are $4 \cdot O(\sqrt{N / B})=O(\sqrt{N / B})$ nodes of Category 1.
Theorem 1. A kd-tree on a set of N points in \mathbb{R}^{2} occupies $O(N / B)$ space, answers a range query in $O(\sqrt{N / B}+K / B) I / O s$, and can be constructed in $O\left(\frac{N}{B} \log _{2} \frac{N}{B}\right) I / O s$.

The following follows immediately:
Corollary 1. For some integer N, the $k d$-tree on a dataset of size $O\left(B \log _{B}^{2} N\right)$ consumes $O\left(\log _{B}^{2} N\right)$ space, answers a query in $O\left(\log _{B} N+K / B\right) I / O$ s, and can be updated in $O\left(\log _{B}^{2} N \cdot \log _{2} \log _{B} N\right)=$ $O\left(\log _{B}^{3} N\right) I / O s$ per insertion and deletion, by re-constructing the tree from scratch after every update.

2 O-Tree

Next, we will leverage Corollary 1 to design the next structure O-tree. We will learn a technique called bootstrapping, which utilizes an inefficient structure (such as the kd-tree) to build an efficient structure.

2.1 Structure

Let N_{0} be an integer that equals $\Theta(N)$, where N is the number of points in the underlying dataset P. The O-tree takes N_{0} as a parameter. You may wonder at this point what happens if N has grown (or shrunk) sufficiently such that $N_{0}=\Theta(N)$ no longer holds. We will see that this can be dealt with using global rebuilding. Until then, we will assume that $N_{0}=\Theta(N)$ always holds.

Let V be a set of s vertical slabs that partition P into P_{1}, \ldots, P_{s} of roughly the same size. Specifically, we will make sure each $P_{i}(1 \leq i \leq s)$ has between $\frac{1}{4} \sqrt{N_{0} B} \cdot \log _{B} N_{0}$ and $\sqrt{N_{0} B} \cdot \log _{B} N_{0}$ points. In other words, $s=\Theta\left(\frac{\sqrt{N_{0}}}{\sqrt{B} \log _{B} N_{0}}\right)$. We use a B-tree \mathcal{V} to index the (total order of the) slabs in V. Number those slabs as $1, \ldots, s$ from left to right.

Next let us focus on one particular P_{i}. We use a set H_{i} of h_{i} horizontal slabs to partition it into $P_{i}[1], \ldots, P_{i}\left[h_{i}\right]$ of roughly the same size. Specifically, each $P_{i}[j]\left(1 \leq j \leq h_{i}\right)$ has between $\frac{1}{4} B \log _{B}^{2} N_{0}$ and $B \log _{B}^{2} N_{0}$ points, namely, $h_{i}=\Theta\left(\frac{\sqrt{N_{0}}}{\sqrt{B} \log _{B} N_{0}}\right)$. The slabs in H_{i} are indexed by a B-tree \mathcal{H}_{i}. Number them as $1, \ldots, h_{i}$ from bottom to top.

We refer to each set $P_{i}[j]$ of points as a cell, and manage them with a kd-tree of Corollary 1. Note that each cell is naturally associated with a rectangle, which is the intersection of the i-th cell of V and the h_{i}-th cell of H_{i}.

This completes the description of the O-tree. Since the information field of each point is stored in only one kd-tree, the O-tree is non-replicating. As for the space consumption, all the kd-trees occupy $O(N / B)$ space in total. $\mathcal{V}, \mathcal{H}_{1}, \ldots, \mathcal{H}_{s}$ together use $O\left(\frac{N_{0}}{B^{2} \log _{B}^{2} N_{0}}\right)=o(N / B)$ space. The total space is therefore linear.

2.2 Query

Given a range query with search region $q=\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$, we first identify $\alpha_{1}\left(\alpha_{2}\right)$ such that $x_{1}\left(x_{2}\right)$ is covered by the α_{1}-th (α_{2}-th) slab of V. Then, for each $i \in\left[\alpha_{1}, \alpha_{2}\right]$, identify $\beta_{i}[1]\left(\beta_{i}[2]\right)$ such that $y_{1}\left(y_{2}\right)$ is covered by the y_{1}-th $\left(y_{2}\right.$-th) slab of H_{i}. We then simply search the kd-trees of all $P_{i}[j]$ where $\alpha_{1} \leq i \leq \alpha_{2}$ and $\beta_{i}[1] \leq j \leq \beta_{i}[2]$.

Using the relevant B-trees, α_{1}, α_{2}, and the $\beta_{i}[1], \beta_{i}[2]$ of all i can be found in $O\left(s \log _{B} N\right)=$ $O\left(\log _{B} N \cdot \frac{\sqrt{N}}{\sqrt{B} \log _{B} N}\right)=O(\sqrt{N / B})$ I/Os. Regarding the cost on kd-trees, first notice that all the points in cell $P_{i}[j]$ where $\alpha_{1}<i<\alpha_{2}$ and $\beta_{i}[1]<j<\beta_{i}[2]$ must be covered by q. Therefore, the time of accessing the kd-trees on those cells is $O(K / B)$. The rest of the query cost comes from the kd-trees on the "boundary cells" whose rectangles intersect an edge of q. Clearly, there can be at most $O\left(\frac{\sqrt{N}}{\sqrt{B} \log _{B} N}\right)$ such kd-trees. By Corollary 1, querying each of them takes $O\left(\log _{B} N\right)$ cost (plus the linear output cost). Thus, the overall query overhead is $O(\sqrt{N / B}+K / B)$.

2.3 Update

Insertion. To insert a point p, we first identify the cell $P_{i}[j]$ whose rectangle covers it in $O\left(\log _{B} N\right)$ I/Os. Then, we insert p in the kd-tree of that cell in $O\left(\log _{B}^{3} N\right)$ I/Os.

If $P_{i}[j]$ has more than $\gamma_{\text {cell }}=B \log _{B}^{2} N_{0}$ points, a cell overflow occurs. In this case, we split the cell by a horizontal line into two cells of the same size, and rebuild their kd-trees in $O\left(\frac{\gamma_{\text {cell }}}{B}\right.$. $\left.\log _{2} \log _{B} N\right)$ I/Os. Note that a new cell has at most $1+\gamma_{\text {cell }} / 2$ points. Accordingly, we update \mathcal{H}_{i} in $O\left(\log _{B} N\right)$ I/Os.

If P_{i} (i.e., the i-th slab in V) has more than $\gamma_{\text {slab }}=\sqrt{N_{0} B} \cdot \log _{B} N_{0}$ points, a slab overflow occurs. In this case, we split P_{i} into two slabs P_{i}, P_{i+1}, and cut each of them horizontally into cells of size $\gamma_{\text {cell }} / 2$ in $O\left(\gamma_{\text {slab }} / B\right)$ I/Os (think how to do so^{1}). Then, we rebuild the kd-trees of those cells, as well as \mathcal{H}_{i} and \mathcal{H}_{i+1}, in $O\left(\frac{\gamma_{\text {slab }}}{B} \cdot \log _{2} \log _{B} N\right)$ I/Os. Note that a new slab has at most $1+\gamma_{s l a b} / 2$ points. Finally, \mathcal{V} is updated in $O\left(\log _{B} N\right)$ I/Os.
Deletion. To delete a point p, we first remove it from the cell $P_{i}[j]$ it belongs to in $O\left(\log _{B}^{3} N\right)$ I/Os. If $P_{i}[j]$ has less than $\frac{\gamma_{c e l l}}{4}$ points, a cell underflow occurs, in which case we merge it with the cell above it (or below it, whichever exists). If the resulting cell contains more than $3 \gamma_{\text {cell }} / 4$ points, split it into two of equal size. In this way, we can ensure that a new cell has between $3 \gamma_{\text {cell }} / 8$ and $3 \gamma_{\text {cell }} / 4$ points. In any case, we rebuild the kd-trees of the new cells in $O\left(\log _{B}^{2} N \cdot \log _{2} \log _{B} N\right)$ I/Os, and modify \mathcal{H}_{i} in $O\left(\log _{B} N\right)$ I/Os.

If P_{i} has less than $\gamma_{s l a b} / 4$ points, a slab underflow occurs. In this case, we merge P_{i} with its left (or right) slab. If the resulting slab has more than $3 \gamma_{\text {slab }} / 4$ points, split it into two of equal size, to guarantee that a new slab has between $3 \gamma_{s l a b} / 8$ and $3 \gamma_{s l a b} / 4$ points. In any case, we rebuild the kd-trees of the new cells in $O\left(\frac{\gamma_{s l a b}}{B} \cdot \log _{2} \log _{B} N\right) \mathrm{I} / \mathrm{Os}$, and modify \mathcal{V} in $O\left(\log _{B} N\right) \mathrm{I} / \mathrm{Os}$.
Construction. All the cells can be easily obtained in $O\left(\frac{N}{B} \log _{2} \frac{N}{B}\right)$ I/Os by sorting. After that, each kd-tree can be constructed in $O\left(\frac{\gamma_{c e l l}}{B} \log _{2} \log _{B} N\right) \mathrm{I} / \mathrm{Os}$, rendering the total overhead of $O\left(\frac{N}{B} \log _{2} \log _{B} N\right)$ of building all kd-trees.
Cost. Clearly, if no cell/slab overflow/underflow happens, an update finishes in $O\left(\log _{B}^{3} N\right)$ I/Os. A cell overflow/underflow, on the other hand, demands $O\left(\frac{\gamma_{s l a b}}{B} \cdot \log _{2} \log _{B} N\right)$ I/Os. However, since a new cell requires at least $\Omega\left(\gamma_{s l a b}\right)$ updates to incur the next overflow/underflow, each update

[^0]accounts for only $O\left(\log _{2} \log _{B} N\right)$ I/Os for a cell overflow/underflow. A similar argument shows that an update is amortized on $O\left(\log _{2} \log _{B} N\right)$ I/Os for the cost of remedying a slab overflow/underflow.

We conclude:
Lemma 2. As long as the assumption $N_{0}=\Theta(N)$ holds, there is a non-replicating structure that consumes linear space, answers a query in $O(\sqrt{N / B}+K / B) I / O s$, and supports an update in $O\left(\log _{B}^{3} N\right) I / O s$ amortized. The structure can be built in $O\left(\frac{N}{B} \log _{2} \frac{N}{B}\right) I / O s$.

2.4 Global Rebuilding

The assumption $N_{0}=\Theta(N)$ can be removed easily. Suppose that we have rebuilt a new O-tree by setting N_{0} to the size N of the current dataset. Then, we handle the next $N_{0} / 2$ updates using the algorithms of the previous subsection, during which N can range from $N_{0} / 2$ to $3 N_{0} / 2$, and is therefore $\Theta\left(N_{0}\right)$. Right after finishing with $N_{0} / 2$ updates, however, we destroy the O-tree, and construct a fresh one by performing N insertions in $O\left(N \log _{B}^{3} N\right)$ I/Os. By the standard analysis of global rebuilding, each update bears only $O\left(\log _{B}^{3} N\right)$ I/Os amortized. So, now we can claim:

Lemma 3. There is a non-replicating structure that consumes linear space, answers a query in $O(\sqrt{N / B}+K / B) I / O s$, and supports an update in $O\left(\log _{B}^{3} N\right) I /$ os amortized. The structure can be built in $O\left(\frac{N}{B} \log _{2} \frac{N}{B}\right) I / O s$.

2.5 Bootstrapping

We have obtained a linear space structure with the optimal query performance which can be updated in poly-logarithmic I/Os. This is a significant improvement over the kd-tree. Remember that this is achieved by using the inferior structure of Corollary 1 to handle small datasets (of size at most $\left.B \log _{B}^{2} N\right)$-an idea known as bootstrapping.

Somewhat surprisingly, we can bootstrap again to achieve our desired logarithmic update bound, by doing (almost) nothing. Observe that Lemma 3 gives us a stronger version of Corollary 1:

Corollary 2. For some integer N, there is a non-replicating structure on a dataset of size $O\left(B \log _{B}^{2} N\right)$ consumes $O\left(\log _{B}^{2} N\right)$ space, answers a query in $O\left(\log _{B} N+K / B\right) I / O s$, and can be updated in $O\left(\log _{B}^{3} \log _{B} N\right) I / O s$ amortized per insertion and deletion. The tree can be constructed in $O\left(\log _{B}^{2} N \cdot \log _{2} \log _{B} N\right) I / O s$.

Now, let us implement every cell structure of the O-tree (which was a kd-tree before) as a structure of Corollary 2. Everything remains the same, except that now an update takes $O\left(\log _{B} N+\right.$ $\left.\log _{B}^{3} \log _{B} N\right)=O\left(\log _{B} N\right)$ I/Os if no cell/slab overflow/underflow occurs. Therefore, we have arrived at our ultimate structure:

Theorem 2. There is a non-replicating structure that consumes linear space, answers a query in $O(\sqrt{N / B}+K / B) I / O s$, and supports an insertion and deletion in $O\left(\log _{B} N\right) I / O$ s amortized.

Remarks. It is natural to wonder whether we can apply it once more to lower the update time even further. The answer is negative because by utilizing the structure of Corollary 2 we have already conquered the bottleneck, which was the expensive update cost of the kd-tree in Corollary 1. The new bottleneck is the logarithmic cost of finding which cell to update, and cannot be improved any more.

References

[1] J. L. Bentley. Multidimensional binary search trees used for associative searching. CACM, 18(9):509-517, 1975.
[2] K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-replicating index structures. In ICDT, pages 257-276, 1999.
[3] Y. Tao. Indexability of 2 d range search revisited: constant redundancy and weak indivisibility. In PODS, pages 131-142, 2012.

[^0]: ${ }^{1}$ The last cell may have less than $\gamma_{\text {cell }} / 2$ points. If it has at least $3 \gamma_{\text {cell }} / 8$ points, we leave it there directly. Otherwise, we merge it with the cell below it to create a cell of size less than $7 \gamma_{\text {cell }} / 8$.

