Lecture Notes: Range Searching with Linear Space

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

In this lecture, we will continue our discussion on the range searching problem. Recall that the
input set P consists of N points in R?. Given an axis-parallel rectangle g, a range query reports all
the points of P N ¢g. We want to maintain a fully dynamic structure on P to answer range queries
efficiently.

We will focus on non-replicating structures [2, 3|. Specifically, consider that each point in P has
an information field (e.g., the menu of a restaurant) of L words, where L = o(B). Given a query,
an algorithm must report the information fields of all the points that fall in the query window. A
non-replicating structure is allowed to use O(N/B) + NL/B space. Note that the term NL/B is
outside the big-O. In other words, the structure can store each information field exactly once, and
on top of that, consume O(N/B) extra space. The external range tree we discussed previous is not
non-replicating (think: why?).

It is known [3] that the best query time of a non-replicating structure is O(/NL/B + KL/B)
I/Os. We will introduce two structures that are able to guarantee this cost. The first one, called
the kd-tree [1], is very simple but unfortunately is difficult to update. Then, we will see how to
utilize the kd-tree to design another structure called the O-tree [2], which retains the same query
performance as the kd-tree, and supports an update in O(logg N) 1/Os amortized.

For convenience, we will assume L = O(1), namely, each information field requires constant
words to store. Extensions to general L = o(B) are straightforward.

1 Kd-Tree

Structure. The kd-tree is a binary tree 7. Let splitdim be a variable whose value equals either
the x- or y-axis. 7T is built by a function build(P, splitdim) which returns the root of 7. If P has
at most B points, the function returns a single node containing all those points. Otherwise, it finds
a line ¢ perpendicular to axis splitdim that divides P into P, and P, of equal size. This can be
done in O(|P|/B) 1/Os using a “k-selection” algorithm. The function then creates a node r storing
¢ (which is called the split line of), and sets the left and right children of r to the nodes returned
by recursively invoking build(Py, alterdim) and build(Py, alterdim), respectively, where alterdim
equals the x-axis if splitdim is the y-axis, and vice versa. The function terminates by returning r.

Figure 1 shows an example assuming B = 1. It is easy to see that every leaf node has at
least B/2 points (think: why?). Hence, 7 has O(log(N/B)) levels and can be constructed in
O((N/B)log(N/B)) 1/Os.

Query. Observe that each node u of T corresponds to a bounding rectangle rec(u) which is the
intersection of all the half-planes implied by the root-to-u path. For example, in Figure 1, the
rectangle of node /3 is the half-plane on the right of ¢;, whereas that of node h is bounded by
l1,/03, s and the x-axis. Given a range query with search region ¢, we simply access all the nodes
u such that rec(u) intersects ¢, and report the points covered by ¢ stored in the leaf nodes visited.

AY 05 4 l;
a
L b
4 ° <
‘gll
od B
KQ L4 j
i . ’
t ol J
'5 Z10
l []
[]
64 ZG i
Figure 1: A kd-tree
0 14
{3
ly

Figure 2: Proof of Lemma 1

Analysis. We will show that the query cost is O(y/N/B + K/B). Clearly, the nodes accessed can
be divided into two categories: nodes whose bounding rectangles:

1. intersect at least one edge of ¢;
2. are enclosed by gq.

For a node of Category 2, its entire subtree must be visited, with all of its leaf nodes having to be
reported. Hence, the number of nodes of this category is O(K/B). Next, we focus on the nodes of
Category 1.

We prove actually a stronger result:

Lemma 1. The number of nodes whose bounding rectangles intersect any vertical (or horizontal)

line £ is at most O(/N/B).

Proof. Let f(N) be the maximum number of nodes whose bounding rectangles intersect ¢ among
all the kd-trees with N nodes. Let u; be the root of any such kd-tree. Assume without loss of
generality that the split line of u; is perpendicular to the x-axis. Again, without loss of generality,
assume that £ is on the right of the split line ¢; of u;. Let the right child of u; be ug having split
line /3. Let the left and right children of ug be u4 and us, respectively. See Figure 2.

Clearly, ¢ intersects rec(uy) and rec(us), and does not intersect the bounding rectangle of any
node in the left subtree of u;. The subtree of uy (us) is a kd-tree with N/4 nodes with the split line

of the root being perpendicular to the x-axis. Hence, the number of nodes in that kd-tree whose
bounding rectangles intersect £ is at most f(/N/4). It follows that

f(N) = 2+2f(N/4)
with f(N) = 1 if N < B. Solving the recurrence gives f(N) = O(y/N/B). O
We thus conclude that there are 4 - O(1/N/B) = O(/N/B) nodes of Category 1.

Theorem 1. A kd-tree on a set of N points in R? occupies O(N/B) space, answers a range query
in O(\/N/B + K/B) 1/0s, and can be constructed in O(% logy &) 1/0:s.

The following follows immediately:

Corollary 1. For some integer N, the kd-tree on a dataset of size O(Blogh N) consumes O(log% N)
space, answers a query in O(logg N+ K/B) 1/Os, and can be updated in O(log%h N -logy logy N) =
O(log% N) 1/Os per insertion and deletion, by re-constructing the tree from scratch after every
update.

2 O-Tree

Next, we will leverage Corollary 1 to design the next structure O-tree. We will learn a technique
called bootstrapping, which utilizes an inefficient structure (such as the kd-tree) to build an efficient
structure.

2.1 Structure

Let Ny be an integer that equals ©(V), where N is the number of points in the underlying dataset
P. The O-tree takes Ny as a parameter. You may wonder at this point what happens if N has
grown (or shrunk) sufficiently such that No = O(N) no longer holds. We will see that this can be
dealt with using global rebuilding. Until then, we will assume that Ny = ©(N) always holds.

Let V be a set of s vertical slabs that partition P into Py, ..., Ps of roughly the same size.

Specifically, we will make sure each P; (1 < ¢ < s) has between %\/NOB-logB Np and /NoB-logg Ny

points. In other words, s = @(@17 VO]gVON) We use a B-tree V to index the (total order of the) slabs
B No

in V. Number those slabs as 1, ..., s from left to right.

Next let us focus on one particular P;. We use a set H; of h; horizontal slabs to partition it
into B;[1],..., P;[h;] of roughly the same size. Specifically, each P;[j] (1 < j < h;) has between

%B log% No and Blog% Ny points, namely, h; = @(%}‘;NO). The slabs in H; are indexed by a

B-tree ‘H;. Number them as 1, ..., h; from bottom to top.

We refer to each set P;[j] of points as a cell, and manage them with a kd-tree of Corollary 1.
Note that each cell is naturally associated with a rectangle, which is the intersection of the i-th cell
of V' and the h;-th cell of H;.

This completes the description of the O-tree. Since the information field of each point is stored
in only one kd-tree, the O-tree is non-replicating. As for the space consumption, all the kd-trees
occupy O(N/B) space in total. V, H;, ..., Hs together use O(ﬁ%}g%) = o(IN/B) space. The total
space is therefore linear.

2.2 Query

Given a range query with search region ¢ = [z1,x2] X [y1,y2], we first identify oy (c2) such that
x1 (x2) is covered by the aj-th (as-th) slab of V. Then, for each i € [aq, as], identify 5;[1] (5;[2])
such that y; (y2) is covered by the y;-th (yo-th) slab of H;. We then simply search the kd-trees of
all P;[j] where a; <i < ay and f;[1] < j < §;[2].

Using the relevant B-trees, aq,aqg, and the j;[1], 5;[2] of all i can be found in O(slogg N) =

O(logg N - @%@;A{) = O(y/N/B) 1/0s. Regarding the cost on kd-trees, first notice that all the

points in cell P;[j] where a; < i < ag and S;[1] < j < (;[2] must be covered by q. Therefore, the
time of accessing the kd-trees on those cells is O(K/B). The rest of the query cost comes from
the kd-trees on the “boundary cells” whose rectangles intersect an edge of ¢q. Clearly, there can be

at most O(L) such kd-trees. By Corollary 1, querying each of them takes O(logyz N) cost

VBlogg N
(plus the linear output cost). Thus, the overall query overhead is O(\/N/B + K/B).

2.3 Update

Insertion. To insert a point p, we first identify the cell P;[j] whose rectangle covers it in O(logg V)
I/Os. Then, we insert p in the kd-tree of that cell in O(log} N) 1/Os.

If P;[j] has more than 7. = Blog2B Ny points, a cell overflow occurs. In this case, we split
the cell by a horizontal line into two cells of the same size, and rebuild their kd-trees in O(Zgt -
logy logg N) I/Os. Note that a new cell has at most 1 4 ~y..;;/2 points. Accordingly, we update H;
in O(logg N) I/Os.

If P; (i.e., the i-th slab in V') has more than g = v/NoB - logg Ny points, a slab overflow
occurs. In this case, we split F; into two slabs P;, P;11, and cut each of them horizontally into cells
of size Yeer1/2 in O(Ysiap/B) 1/Os (think how to do so'). Then, we rebuild the kd-trees of those
cells, as well as H; and H;y1, in O(39L - logylogg V) 1/Os. Note that a new slab has at most
1 + Ys1ap/2 points. Finally, V is updated in O(logg N) I/Os.

Deletion. To delete a point p, we first remove it from the cell P[j] it belongs to in O(logh N)
I/Os. If P;[j] has less than 2= points, a cell underflow occurs, in which case we merge it with the
cell above it (or below it, whichever exists). If the resulting cell contains more than 3v.e;/4 points,
split it into two of equal size. In this way, we can ensure that a new cell has between 3. /8 and
3Yeert/4 points. In any case, we rebuild the kd-trees of the new cells in O(long N -logylogg N)
I/0Os, and modify H; in O(logg N) I/Os.

If P; has less than 7445/4 points, a slab underflow occurs. In this case, we merge P; with its left
(or right) slab. If the resulting slab has more than 3v4,,/4 points, split it into two of equal size,
to guarantee that a new slab has between 37,,/8 and 3745/4 points. In any case, we rebuild the
kd-trees of the new cells in O(2$2 - log, logg N)I/Os, and modify V in O(logg N) 1/Os.

Construction. All the cells can be easily obtained in O(%logQ %) I/Os by sorting. After
that, each kd-tree can be constructed in O(2%L log,log N) 1/Os, rendering the total overhead
of O(% log, logg V) of building all kd-trees.

Cost. Clearly, if no cell/slab overflow/underflow happens, an update finishes in O(log% N) 1/Os.
A cell overflow /underflow, on the other hand, demands O(22 - log, logg V') 1/Os. However, since
a new cell requires at least Q(vsq5) updates to incur the next overflow/underflow, each update

'The last cell may have less than 7ee;/2 points. If it has at least 3vcei/8 points, we leave it there directly.
Otherwise, we merge it with the cell below it to create a cell of size less than 7vcei /8.

accounts for only O(log, logg N) I/Os for a cell overflow /underflow. A similar argument shows that
an update is amortized on O(log, logz N) I/Os for the cost of remedying a slab overflow /underflow.
We conclude:

Lemma 2. As long as the assumption Nog = ©(N) holds, there is a non-replicating structure that
consumes linear space, answers a query in O(/N/B + K/B) 1/0s, and supports an update in
O(log} N) I/Os amortized. The structure can be built in O(% logy %) 1/0s.

2.4 Global Rebuilding

The assumption Ny = O(N) can be removed easily. Suppose that we have rebuilt a new O-tree
by setting Ny to the size N of the current dataset. Then, we handle the next Ny/2 updates using
the algorithms of the previous subsection, during which N can range from Ny/2 to 3Ny/2, and
is therefore ©(Np). Right after finishing with Ny/2 updates, however, we destroy the O-tree, and
construct a fresh one by performing N insertions in O(N log% N) 1/Os. By the standard analysis
of global rebuilding, each update bears only O(log% N) 1/Os amortized. So, now we can claim:

Lemma 3. There is a non-replicating structure that consumes linear space, answers a query in
O(\/N/B + K/B) I/0s, and supports an update in O(log} N) I/Os amortized. The structure can
be built in O(% logy &) 1/0s.

2.5 Bootstrapping

We have obtained a linear space structure with the optimal query performance which can be updated
in poly-logarithmic I/Os. This is a significant improvement over the kd-tree. Remember that this
is achieved by using the inferior structure of Corollary 1 to handle small datasets (of size at most
B log2B N)—an idea known as bootstrapping.

Somewhat surprisingly, we can bootstrap again to achieve our desired logarithmic update bound,
by doing (almost) nothing. Observe that Lemma 3 gives us a stronger version of Corollary 1:

Corollary 2. For some integer N, there is a non-replicating structure on a dataset of size O(B logQB N)
consumes O(logh N) space, answers a query in O(logg N + K/B) 1/Os, and can be updated
in O(loghlogy N) I/Os amortized per insertion and deletion. The tree can be constructed in
O(log% N -logylogg N) I/0s.

Now, let us implement every cell structure of the O-tree (which was a kd-tree before) as a
structure of Corollary 2. Everything remains the same, except that now an update takes O(logz N+
loghlogg N) = O(logg N) 1/Os if no cell/slab overflow/underflow occurs. Therefore, we have
arrived at our ultimate structure:

Theorem 2. There is a non-replicating structure that consumes linear space, answers a query in
O(\/N/B + K/B) 1/0s, and supports an insertion and deletion in O(logg N) 1/Os amortized.

Remarks. It is natural to wonder whether we can apply it once more to lower the update time even
further. The answer is negative because by utilizing the structure of Corollary 2 we have already
conquered the bottleneck, which was the expensive update cost of the kd-tree in Corollary 1. The
new bottleneck is the logarithmic cost of finding which cell to update, and cannot be improved any
more.

References

[1] J. L. Bentley. Multidimensional binary search trees used for associative searching. CACM,
18(9):509-517, 1975.

[2] K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-replicating index
structures. In ICDT, pages 257-276, 1999.

[3] Y. Tao. Indexability of 2d range search revisited: constant redundancy and weak indivisibility.
In PODS, pages 131-142, 2012.

