
Lecture Notes: Range Counting

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

So far all the problems we have discussed are reporting problems, where we want to report the
data elements qualifying a predicate. There is another class of problems that aim at outputting a
constant amount of information to summarize a subset of elements. In this lecture, we will discuss
such a problem called range counting. Let P be a set of N points in R

2. Given an axis-parallel
rectangle q ∈ R, a range count query reports the number of points in P that are covered by q. The
goal is to pre-process P into a data structure such that all queries can be answered efficiently.

Although we defined the problem by specifying q as a 4-sided rectangle, it is sufficient to focus
on 2-sided q in the form of (−∞, x]× (−∞, y]. A moment of thinking will reveal that the result of
a 4-sided query can be obtained from four 2-sided queries.

We will assume that each (computer) word has at least log2N bits, which is a common assump-
tion in the literature with good justifications. Most algorithms in computer science (including the
ones to be presented below) implicitly assume that each real number or integer fits in one word.
Notice that log2N bits are needed to represent N itself. So a CPU with word length less than this
many bits cannot even represent the problem size (which is also the largest result size for a range
query) in one word. Furthermore, the N input points can have different x-coordinates. Hence, the
word length should be at least long enough so that we can represent N distinct x-coordinates, thus
necessitating log2N bits.

We will introduce the CRB-tree [1] which uses O(N/B) space, and answers a range count query
in O(logB N) I/Os. We will learn a technique that crams multiple integers into a single word—
something that we have not attempted so far in this course. As usual, we will assume that P is in
general position such that no two points in P share the same x- or y- coordinate.

1 Structure

The base tree of the CRB-tree is a B-tree T on the x-coordinates of the points in P . The leaf and
branching parameters of T are both B. As before, given a node u ∈ T , we define σ(u) as the slab
of u, and sub(u) as its subtree. Also, let P (u) be the set of points stored at the leaf nodes in sub(u),
and set N(u) = |P (u)|.

Consider u to be an internal node. We will associate u with a secondary structure T (u) that

consumes O(N(u)
B logB N

) space, i.e., sub-linear to N(u). As a result, the space of the secondary

structures of all the nodes at each internal level of T adds up to O(N
B log

B
N
). Since there are

O(logB N) internal level, the overall structure occupies O(N/B) space.
Given two points p1, p2, we say that p1 is below p2 if the y-coordinate of the former is at most that

of the latter. Suppose that u has f child nodes u1, ..., uf (in ascending order of their slabs). Note
that P (u1), ..., P (uf) constitute a partition of P (u). T (u) will be used for the following purpose.
Given an integer r ≤ N(u), we want to report, for each child node ui (1 ≤ i ≤ f), how many points
in P (ui) are below pr, which is the r-th highest point of P (u). In other words, f counts should be
reported. Let us call this a bundled probe. We will see that T (u) allows us to do so in O(1) I/Os.

1

Let us break P (u) into s subsets Pu[1], ..., Pu[s], called chunks, along the y-dimension, i.e., points
in Pu[k] are all below those in Pu[k

′] for any k < k′. Each chunk, except possibly the last one,

has the same size B logB N . Hence, s = O(N(u)
B logB N

). For each chunk Pu[k], we keep a block of

f ≤ B numbers Cu[k][1], ..., Cu [k][f], where Cu[k][i] equals the number of points from P (ui) in the
preceding chunks, namely, Pu[1], ..., Pu[k − 1]. Refer to {Cu[k][1], ..., Cu[k][f]} as the prefix count

set of Pu[k]. We store the prefix counts of all chunks in s consecutive blocks, so that the prefix
counts of any Pu[k] can be fetched in one I/O.

In a bundled probe with input r, the chunk that contains pr is Pu[k
⋆] where k⋆ = ⌈r/(B logB N)⌉.

The prefix count set of Pu[k
⋆] tells us, for each child node ui, how many points from P (ui) are in

the first k⋆−1 chunks. Hence, we still have to know exactly how many of the lowest r−k⋆B logB N
points in Pu[k

⋆] are from P (ui).
For this purpose, we pre-compute some extra information about Pu[k

⋆]. For each point in chunk
Pu[k

⋆], we use log2B bits to record its branch index, i.e., which of the f ≤ B child nodes has p in the
subtree. As Pu[k

⋆] has B logB N points, their branch indexes require B · logB N · log2 B = B log2 N
bits in total, which is exactly how many bits a block has. Hence, we can keep all of them in one
block. Care should be exercised to put the branch index of the lowest point of Pu[k

⋆] as the first
log2 B bits in this block, that of the second lowest point as the second log2 B bits, and so on. In
this way, a bundled probe with input r can know which bits belong to the lowest r − k⋆B logB N
points. Note that after reading the branch index block, bit inspection is done in memory, and thus
incurs no cost. We put the branch index blocks of all chunks consecutively, so that the block of
any chunk can be obtained in one I/O by chunk id.

Overall, T (u) contains two blocks for each chunk: one for its prefix counter set, and the other

as its branch index block. It therefore uses s = O(N(u)
B logB N

) space.

2 Query

We proceed to explain how to process a range count query with search region q = (−∞, x]×(−∞, y].
First, we obtain the number ry of points in P whose y-coordinates are at most y. This can be done
in O(logB N) I/Os using a slightly-augmented B-tree (think: how?). Then, initialize the query
result res = 0, and invoke the following probe(u, r) function, by setting u to the root of T and
r = ry.

In general, we keep to the invariant that, every time probe(u, r) is invoked, r equals the number
of points in P (u) whose y-coordinates are at most y. The function returns the number of points in
P (u) ∩ q. If u is a leaf node, we accomplish this by simply checking every point in u. Otherwise,
assume that u has child nodes u1, ..., uf . We first obtain the α such that x ∈ σ(uα). Then, we
perform on T (u) a bundled probe with input r. Recall that the bundled probe returns f values
β1, ..., βf , where βi equals the number of points in P (ui) that are under the r-th highest point in
P (u), or equivalently (by the definition of r), that have y-coordinates at most y. We increase res
by

∑α−1
i=1 βi and then by the value returned from probe(uα, βα).

Overall, the query algorithm performs constant I/Os at each node along a root-to-leaf path of
T . The query cost is therefore O(logB N).

References

[1] S. Govindarajan, P. K. Agarwal, and L. Arge. CRB-tree: An efficient indexing scheme for
range-aggregate queries. In ICDT, pages 143–157, 2003.

2

