
Lecture Notes: External Priority Search Tree

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

In this lecture, we will consider another fundamental problem in computer science: 3-sided range
searching. Let P be a set of N points in R2. A rectangle is said to be 3-sided if it has the form
[x1, x2] × [y,∞), namely, its bottom edge is grounded at the bottom of the data space. Given a
3-sided rectangle q, a 3-sided range query reports all the points of P covered by q, namely, P ∩ q.
This problem generalizes the stabbing problem we discussed previously (think: why?).

Interestingly, the persistent B-tree can also be used to solve the static version of the problem.

Lemma 1. There is a persistent B-tree that consumes O(N/B) space and answers a 3-sided range
query in O(logB N +K/B) I/Os, where K is the number of points reported.

Proof. From each point p ∈ P , create a vertical ray shooting downwards from p. Let R be the
set of all such rays. Then, p falls in a 3-sided rectangle q = [x1, x2] × [y,∞) if and only if its
ray intersects the horizontal segment [x1, x2] × y. Hence, we can instead find all the rays in R
intersecting [x1, x2]× y, a problem that can be solved by a persistent B-tree with the performance
claimed.

Next, we will introduce the external priority search tree [1], which is a dynamic structure that
has the same space and query cost as the persistent B-tree, but also supports an insertion and a
deletion in O(logB N) I/Os. Our discussion will make the tall cache assumption M ≥ B2. We also
assume that P is in general position, namely, no two points in P have the same x- or y-coordinate.

1 Structure

The base tree of the external priority search tree is a weight balanced B-tree T on the set of x-
coordinates of the points in P . The leaf and branching parameters of T are both set to B. Each
node u in T naturally corresponds to a vertical slab σ(u) in R2. Denote by sub(u) the subtree of u.

Each node u is associated with a pilot set denoted as pilot(u). Next, we define the pilot sets in
a top-down fashion:

• Let vroot be the root of T . If vroot is a leaf, then pilot(vroot) is simply P itself. Otherwise,
suppose that vroot has f child nodes u1, ..., uf . Then, pilot(vroot) is the union of the B highest
points from each sub(ui), for i ∈ [1, f ].

• Now consider an internal node v with f child nodes u1, ..., uf . Let pilot(v, ui) be the B highest
points in sub(ui) after excluding the points that already appear in the pilot sets of the proper
ancestors of v. If less than B points satisfy the condition, pilot(v, ui) includes all of them.
Then, the pilot set pilot(v) of v simply unions pilot(v, u1), ..., pilot(v, uf ).

• Finally, for a leaf node z, pilot(z) is the set of points in σ(z) that do not belong to the pilot
set of any proper ancestor of z.

Note that each pilot set has at most B2 points.

1



For each internal node v, we associate v with a persistent B-tree T (v) built on pilot(v). To
facilitate updates, we use a B-tree T ′(u) to index the y-coordinates of the points in pilot(u). If z is a
leaf node, it is associated with just an extra block to store pilot(z). The overall space consumption
is O(N/B) (think: why?).

2 Query

We answer a query by reporting points only from the pilot sets. Given a query rectangle q =
[x1, x2]× [y,∞), descend a root-to-leaf path Π1 (Π2) to the leaf node whose slab contains x1 (x2).
For each node u ∈ Π1 ∪Π2, launch the following filtering search process:

• If u is a leaf node, simply report all the points in pilot(u) covered by q.

• Otherwise, suppose that ui1 , ..., ui2 are the child nodes of u such that σj (i1 ≤ j ≤ i2) is
contained in [x1, x2]×R. Let q′ = σi1 ∪ σi1+1 ∪ ... ∪ σi2 . Search T (u) to report all the points
in pilot(u) covered by q′. For each j ∈ [i1, i2] such that B points have been reported, perform
the filtering search process on uj .

The above algorithm correctly finds all the points in P ∩ q (think: why?).
For each node u visited by the query algorithm, we spend O(1 + Ku/B) I/Os (see Lemma 1),

where Ku is the number of points reported from T (u). Refer to the term “1” as the search cost at
u. The nodes visited can be divided into two groups: (i) those on Π1 and Π2, and (ii) those that
are not (note that any such node u must have its slab σ(u) covered completely by [x1, x2] × R).
For each node u of the second group, Ω(B) points in σ(u) must have been reported at the parent
of u. Hence, we charge the search cost of u on those points. In this way, each point reported bears
O(1/B) additional I/Os. The overall query cost is therefore O(logB N + K/B) (think: how to
account for the nodes of the first group?).

3 Updates

Next, we will make the external priority search tree dynamic.

3.1 The B2-Structure

Recall that each node u is associated with a persistent B-tree T (u). By applying the “single buffer
block” trick for T (u) (see Lemma 2 of the lecture nodes on the external interval tree), we have:

Lemma 2. Under the tall-cache assumption, T (u) can be updated in O(1) amortized I/Os per
insertion and deletion.

3.2 Demotion

Given a point p and a node u such that p ∈ σ(u), a demotion operation adds p to the unique pilot
set (of some node) in sub(u) that should contain p, according to the pilot set definition. If u is a
leaf node, we simply place p in the block storing pilot(u).

Now consider that u is an internal node. Let u′ be the child node of u such that σ(u′) contains
p. If pilot(u, u′) currently has less than B points, we finish by adding p to pilot(u), updating T (u)
and T ′(u) accordingly. Otherwise, we use T (u) to find the lowest point, say p′, in pilot(u, u′) in
O(1) I/Os (think: how?). Then:

2



• If p is higher than p′, remove p′ from pilot(u) and add p to pilot(u) by updating T (u) and
T ′(u) appropriately. After this, perform a demotion operation with p′ and u′.

• Otherwise, simply perform a demotion operation with p and u′.

In general, if u is at level l, in the worst case we perform constant I/Os at each node along a
single path from u to a leaf node. Hence, a demotion finishes in O(l + 1) I/Os.

3.3 Promotion

Conversely, given a node u, sometimes we need to perform a promotion operation to remove from
pilot(u) the highest point p there, if pilot(u) is not empty. If u is a leaf node, this is trivial.

Now consider that u is an internal node. We first obtain p from T ′(u) in O(1) I/Os. Then, we
remove p from pilot(u), updating T (u) and T ′(u) appropriately. Suppose that u′ is the child node
of u whose slab σ(u′) contains p. Recursively promote a point, say p′, from pilot(u′), and add p′ to
pilot(u), updating T (u) and T ′(u) appropriately.

In general, if u is at level l, the promotion takes O(l + 1) I/Os.

3.4 Insertion

Assume that p is the point being inserted. We first insert the x-coordinate of p in T , without
handling the overflows that may have happened. Let Π be the root-to-leaf path we just followed.
Launch a demotion operation with p and the root of T . The cost so far is O(logB N).

Now we handle in bottom-up order the nodes that have overflown during the insertion of p in T .
Let u be such a node and v its parent node. Split u into u1, u2 (as in the weight-balanced B-tree).
Rebuild the secondary structures of u1 and u2 respectively in O(B) I/Os (recall that each secondary
structure indexes at most B2 points, which fit in memory). The split has divided pilot(v, u) into
pilot(v, u1) and pilot(v, u2). Now pilot(v, u1) may have less than B points. Hence, we perform up
to B promotions to fill up pilot(v, u1). Repeat the same for pilot(v, u2). After this, rebuild the
secondary structures of v in O(B) I/Os.

Assume that u is at level l. If l = 0, the overflow handling finishes in constant I/Os. Otherwise,
the cost is O(lB). As T is a weight-balanced B-tree, the weight of u is Θ(Bl+1), meaning that
Ω(Bl+1) updates have been performed in sub(u) since the creation of u. Hence, we can amortize
the overflow handling cost over those updates, such that each of them bears O(lB/Bl+1) = O(1).
As each update can bear such a cost at most O(logB N) times, each insertion can be performed in
O(logB N) I/Os amortized.

3.5 Deletion

It is easy to maintain the pilot sets in O(logB N) I/Os per deletion (we leave the details to you
but obviously you need to use promotion). Recall that, in answering a query, we report points
only from pilot sets. This suggests that we can avoid underflows in the base tree T with global
rebuilding, in a way similar to what we did in the external interval tree. With this, we conclude:

Theorem 1. Under the tall-cached assumption, there exists a structure on a set of N points that
uses O(N/B) space, answers a 3-sided range query in O(logB N + K/B), and can be updated in
O(logB N) amortized I/Os per insertion and deletion.

Remarks. Arge, Samoladas and Vitter [1] showed that the above theorem still holds even without
the tall-cache assumption, and that the update cost can be made worst-case. The filtering search
idea was first proposed by Chazelle [2].

3



References

[1] L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability and optimal range
search indexing. In PODS, pages 346–357, 1999.

[2] B. Chazelle. Filtering search: A new approach to query-answering. SIAM J. of Comp.,
15(3):703–724, 1986.

4


