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Usually, a data structure is ephemeral, namely, once updated (with an insertion or a deletion),
the structure has changed into a new version, such that its previous version (before the update) is
lost permanently. In this lecture, we will discuss an interesting technique called partial persistence

which allows us to preserve all the previous versions of a B-tree that has undergone a sequence of
insertions and deletions.

Formally, we consider the following problem. Let S be a set of elements from the real domain R.
S is initially empty, and then modified by updates, each of which either inserts a new element into
S or deletes an existing element from S. For convenience, we say that the i-th update happens at
timestamp i. We denote by S(i) the version of S at timestamp i (after performing the i-th update).
Given a timestamp t and a value q ∈ R, a timestamp predecessor query reports the predecessor of
q in S(t), namely, the largest element in S(t) not exceeding q. The goal is to design a structure
that consumes small space, can be updated efficiently along with S, and can answer timestamp
predecessor queries efficiently. We will refer to the above as the persistent predecessor problem.

Naively, one can solve this problem by creating a B-tree on every S(i) for all i = 1, 2, ..., N ,
where N is the total number of updates. Each query can be trivially answered in O(logB N)
I/Os. However, the space consumption and update overhead are terrible: all these B-trees can
use O(N2/B) space, and creating a new B-tree for the next update may cost O(N/B) I/Os. On
the other hand, notice that two B-trees at consecutive timestamps share considerable common
information. Thus, a natural question to ask is whether we can leverages such sharing to reduce
the space and update cost. Next, we will see that this is indeed possible. In fact, we will lower the
space all the way to the optimal bound of O(N/B) (note that Ω(N/B) blocks are clearly needed
to store N updates), and guarantee that each update be handled in O(logB N) I/Os. Even better,
we are still able to answer a query in O(logB N) I/Os. Henceforth, we will assume that B ≥ 128 is
a multiple of 16.

1 Persistent B-Tree

Review: B-Tree. Let us start by slightly re-defining the B-tree for the purpose of this lecture.
Let S′ be a set of elements in R, and T a B-tree on S′. All the leaves of T are at the same level.
Each leaf node, if it is not the root, contains between B/4 and B elements in S′—referred to as
leaf elements. Each element of S′ is stored in one, and exactly one, leaf.

Consider now an internal node v of T with child nodes u1, u2, ..., uf . If v is not the root, the
value of f must satisfy B/4 ≤ f ≤ B; otherwise, it must hold that f ≥ 2. For each ui (1 ≤ i ≤ f),
v stores a routing element ei. Without loss of generality, suppose that e1, e2, ..., ef are in ascending
order. For each i ∈ [1, f ], it must hold that all the leaf elements in sub(ui) are between ei and
ei+1 (defining dummy ef+1 = ∞). Note that routing elements are not required to be in S′ (think:
how would this affect predecessor search?). For each i ∈ [1, f − 1], we say that ui and ui+1 are
neighboring siblings.

Persistent B-Tree. Even though named a “tree”, the persistent B-tree—designed by Becker et
al. [1]—is actually an acyclic directed graph T . A node of T is a leaf if no outgoing edge is adjacent
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to it; otherwise, it is an internal node. A leaf node contains up to B element-interval pairs, each of
which is in the form (e, [tstart , tend )), where e is a real value and [tstart , tend ) is a time interval such
that e belongs to S(i) for each i ∈ [tstart , tend ). An internal node v of T , on the other hand, can
have at most B outgoing edges adjacent to it. Each outgoing edge is associated with an element-
interval pair (e, [tstart , tend )) stored in v. Unlike the leaf case, e is not required to be an element
of S(i) for each i ∈ [tstart , tend ). In fact, it is even possible that e does not belong to any S(i) of
i ∈ [tstart , tend ).

Given an element-interval pair (e, [tstart , tend )), we refer to [tstart , tend ) as its lifespan. Also,
the element-interval pair is said to be alive at each timestamp i ∈ [tstart , tend ). A node is alive

at timestamp i if it contains at least one element-interval pair alive at i. Given any timestamp
i ∈ [1, N ], T defines a tree T (i) as follows. First, T (i) includes all and only the nodes of T that
are alive at i. Second, each node of T (i) contains all and only its element-interval pairs alive at i,
and all and only the edges that those pairs correspond to.

We now finish the definition of the persistent B-tree with a crucial constraint: for each i ∈ [1, N ],
T (i) must be a B-tree on S(i).

2 Update

Next, we describe how to maintain the persistent B-tree T along with the updates on S. At the
beginning, T is empty. Suppose that the update at timestamp 1 is to insert an element e into (an
empty) S. We create a leaf node z with only one element-interval pair (e, [1,∞)). In other words,
T (1) is a B-tree with only a single node z. Inductively, assuming that N − 1 updates have been
processed, we will explain how to handle the N -th one.

Before the N -th update, T (N − 1) is the “current” B-tree on S(N − 1) = S. We follow the
convention that, before the update starts, it always holds that tend = ∞ for every element-interval
pair (e, [tstart , tend )) in T (N − 1). Note that the convention implies T (N) = T (N − 1) at this
moment. After the update, we will ensure the same convention, namely, tend = ∞ for every
element-interval pair (e, [tstart , tend )) in T (N).

Re-balancing Operations. Given a node u in T , we use |u| to denote the number of element-
interval pairs in u. Below we define three re-balancing operations that will be invoked during
updates to help us maintain the structure’s correctness:

• Version Copy. This operation is performed on a node u in T (N − 1). Create a node u′. For
each element-interval pair (e, [tstart ,∞)) in u, (i) change it to (e, [tstart , N)) if tstart < N , or
discard it from u otherwise, and (ii) create an element-interval pair (e, [N,∞)) in u′.

Denote by parent(u) the parent of u in T (N − 1). If parent(u) exists, then let (e, [tstart ,∞))
be the element-interval pair stored in parent(u) for u. We change the pair to (e, [tstart , N)),
add an outgoing edge from parent (u) to u′ (essentially, make u′ a child of parent(u)), and
associate the outgoing edge with a new element-interval pair (e, [N,∞)). If, on the other
hand, parent (u) does not exist, it means that u was the root of T (N − 1). We simply make
u′ the root of T (N).

In any case, all the element-interval pairs in u′ have their lifespans started at timestamp N .
Such a node u′ is said to be fresh.

• Split. This operation is performed only on a fresh node u such that |u| ∈ [34B, 118 B]. Sort the
element-interval pairs of u in ascending order the elements they contain. Create a new node
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u′. Move to u′ the second half of the element-interval pairs in the sorted list of u. Note that
both |u| and |u′′| are now between 3

8B and 11
16B.

If parent(u) exists, add an outgoing edge from parent (u) to u′, and associate the edge with a
new element-interval pair (e′, [N,∞)), where e′ is the smallest element in the element-interval
pairs of u′. If, on the other hand, parent(u) does not exist, then create a new node v with
two outgoing edges to u and u′, respectively. For the edge to u (or u′, resp.), store in v
an element-interval (e, [N,∞)) (or (e′, [N,∞)), resp.) where e (or e′, resp.) is the smallest
element in the element-interval pairs of u (or u′, resp.).

• Merge. This operation is performed only on two fresh nodes u, u′. It must hold that one of
the two nodes has between 1

4B − 1 and 3
8B − 1 element-interval pairs, while the other one

has between 1
4B and B element-interval pairs. We move all the element-interval pairs of u′

into u, and accordingly, remove the edge from parent (u) to u′, as well as the element-interval
pair (stored in parent (v)) associated in the edge. If parent (u) is the root of T (N), and now
has only one element-interval pair alive at timestamp N , make u the new root of T (N). If
|u| > 3

4B, split u.

Insertion. We now explain how to handle the N -th update if it inserts an element e into S. Recall
that T (N − 1) is a B-tree on the current S. We first find the leaf node z in T (N − 1) that should
accommodate e, and add an element-interval pair (e, [N,∞)) into z. The insertion finishes if z
currently has at most B element-interval pairs.

In general, a node overflows if it has more than B element-interval pairs. Given such a node u,
we remedy its overflow as follows. First, perform a version copy u, which produces a new node u′.
If |u′| ∈ [38B, 34B], then we are done. Otherwise, there are two possibilities:

• If |u′| > 3
4B, split u′.

• If |u′| < 3
8B, identify a neighboring sibling û of u′ in T (N). Perform a version copy on û

which produces a new node û′. Merge u′ and û′.

The above steps may leave parent (u) overflowing, which is treated in the same manner.

Deletion. Suppose that the N -th update deletes an element e from S. First, find the leaf node z
in T (N−1) that contains e. Change the element-interval pair (e, [tstart ,∞)) there to (e, [tstart , N)).
The deletion finishes if z is the root of T (N), or it currently has at least B/4 element-interval pairs
alive at timestamp N .

In general, a non-root node u of T (N) underflows if it has B/4− 1 element-interval pairs alive
at timestamp N . Given such a node u, we remedy its underflow as follows. First, perform a version
copy u, which produces a new node u′. Identify a neighboring sibling û of u′ in T (N). Perform a
version copy on û which produces a new node û′. Merge u′ and û′.

The above steps may leave parent(u) in one of the following 3 states:

• Neither overflowing nor underflowing. The deletion finishes.

• Overflowing but not underflowing. Handle the overflow as described earlier for insertion.

• Underflowing (perhaps also overflowing). Handle the underflow as described above, and ignore
the overflow.

Update Cost. Each re-balancing operation requires O(1) I/Os. Since T (N) is a B-tree with
height O(logB N), each insertion/deletion can be performed in O(logB N) I/Os.
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3 Query

By definition, the persistent B-tree contains a B-tree T (i) for every timestamp i ∈ [1, N ]. Hence,
to answer a predecessor query at timestamp t, we simply find the root of T (t), and then, answer
the query in T (t). The overall cost is O(logB N). Note that we have not discussed how to find the
root of T (t). We leave to you to figure out how to do so efficiently.

4 Space

It remains to prove that the persistent B-tree uses O(N/B) space. First, the following property is
easy to verify:

Lemma 1. When a node is created from an overflow or underflow, it is a fresh node with between
3
8B and 3

4B elements.

We say that an insertion happens in a node u if an element-interval pair is inserted in u, and
that a logical deletion happens in u if an element-interval pair (e, [tstart , tend )) has its ending time
tend changed from ∞ to a finite value. Also, we say that leaves are at level 0, and that, in general,
the parent of a level i node is at level i+ 1.

There are in total N insertions and logical deletions into the leaf nodes of T . Lemma 1 implies
that at least B/8 insertions and/or logical deletions must be made into a fresh leaf node before it
overflows or underflows. Therefore, there are at most N/(B/8) overflows and underflows at the leaf
level. This means that there are 2N/(B/8) = N/(B/16) leaf nodes because each overflow/underflow
creates at most 2 leaves.

In treating the overflow/underflow of a leaf node, at most 4 insertions and/or logical deletions
are made into nodes of level 1. It follows that the total number of insertions and logical deletions at
this level is at most 4N/(B/16) = N/(B/64). Our earlier argument based on Lemma 1 shows that
there are at most N

(B/16)(B/64) nodes at level 1. In general, at most N
(B/16)(B/64)i

nodes are created

at level i. When B ≥ 128, the overall space is linear.
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