
Lecture Notes: Permutation in External Memory

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

In this lecture, we will study the permutation problem. The input is an array A1 of size n where
the i-th cell (1 ≤ i ≤ n) is a pair (ei, pi). We refer to ei as an element, which fits in one word but
its contents are of no interest to us. The second field pi is an integer from 1 to n such that the
values of p1, p2, ..., pn are distinct. The goal is to output another array A2 of n elements where ei
is placed at the pi-th position (note that ei was in the i-th cell of A1).

In RAM, we can easily solve the problem optimally in O(n) time: for each i ∈ [1, n], set
A2[pi] = ei. The problem is far more interesting in EM, where A1 is given to us in O(n/B) blocks,
and we need to output A2 also in O(n/B) blocks. There are two obvious solutions. The first one is to
sort the elements e1, ..., en by their designated positions p1, ..., pn; the cost is O((n/B) logM/B(n/B))
I/Os. The second solution is to simply ignore blocking, and apply the RAM algorithm directly; the
cost is O(n), because writing to each position of A2 may cost us an I/O.

A natural question arises—since it is possible to achieve linear cost (i.e., O(n)) in RAM, is it
possible to achieve linear cost (i.e., O(n/B)) in EM? This is one of the biggest open problems in
EM. What is known is that this is impossible for an important class of algorithms that obey the
so-called indivisibility assumption (both the naive solutions mentioned earlier are in this class).
Below, we will clarify the assumption, and prove that any algorithm in this class must incur
Ω(min{n, n

B logM/B
n
B}) I/Os in the worst case. In other words, the best thing we can do is to

simply choose between the two naive solutions!

1 The Indivisibility Model

Remember that any analysis aiming to upper bound the running time of an algorithm must be car-
ried out under a computation model (e.g., EM). Likewise, every lower bound argument also comes
with its own computation model, such that the argument applies to all and only the algorithms
under that model.

We will now define a lower-bound model called the indivisibility model. Same as in EM, our
machine is equipped with finite memory and an infinite disk formatted into disjoint blocks. Both
the memory and the disk, however, store nothing but elements. Specifically, at any moment, the
memory always stores M elements (counting an “empty slot” also as a special element), while each
disk block always stores B elements. An algorithm is allowed only two operations:

• Read I/O: Load a block of elements into memory, replacing B elements there.

• Write I/O: Collect B elements in the memory, and write them to a disk block, erasing the
elements that the block originally contained.

The cost of an algorithm is the number of I/Os performed.
You may be wondering: why haven’t we defined any operation for computing? The answer is:

we don’t care! The above model is concerned only with the movement of elements, but not with
how the algorithm learns to do the movement. To illustrate, let us consider the following problem.
Suppose that we are given a set S of n elements stored in n/B blocks. Now we want to load a
particular element e ∈ S into memory, but do not know which is the block containing it. How

1

many I/Os do we need to perform in the worst case? In the indivisibility model, the answer is
one—simply go to the block of e, and read it—and we do not have to worry about how to find the
address of that block! In EM, clearly we need n/B I/Os for the same purpose, but how does the
definition of the EM model prevent the “magic algorithm” of only one I/O? The answer lies in the
EM requirement that, before an algorithm reads/writes a block, it should have already obtained
the block’s address through its execution so far. Hence, the “magic algorithm” is not really a valid
algorithm in the EM model.

You may still be wondering: are algorithms in the indivisibility model more powerful? This
intuition is valid (but not completely correct, as we will see), and can be formalized as follows.
Suppose that an algorithm in the EM model always treats each element as an atom—in other
words, the algorithm is not allowed to, for example, (i) break an element into pieces and store
them in different blocks; or (ii) compress an element. We can convert this algorithm to work in the
indivisibility model with (at most) the same cost (think: how?). The other way around, however, is
not true. Namely, an algorithm in the indivisibility model does not necessarily have a counterpart
in the EM model with the same cost—we have seen an example earlier.

The above asymmetry indicates that the indivisibility model is not a good model for studying
real algorithms, but it is a good model for studying lower bounds. Specifically, if we can show
that any algorithm in this model must perform at least x I/Os solving a problem, then any EM
algorithm must also perform at least x I/Os.

Why not study lower bounds in the EM model directly? The answer is that some EM algorithms
may potentially be even more powerful than those in the indivisibility model. If an EM algorithm
does not treat elements as atoms, then it has no counterpart in the indivisibility model; and
therefore, a lower bound in the indivisibility model does not apply to such an EM algorithm. Now
it should be clear that neither of the indivisibility model and the EM model subsumes the other.
A lower bound in the indivisibility model applies only to a class of algorithms in EM—this class is
often referred to as the indivisibility class.

2 A Permutation Lower Bound

Next, we will prove that any algorithm in the indivisibility model must perform Ω(min{n, n
B logM/B

n
B })

I/Os to solve the permutation problem in the worse case. This argument is due to Aggarwal and
Vitter [1].

We consider n ≥ 2B. Fix an arbitrary algorithm; and let H be the number of I/Os it performs
in the worst case. We will consider H ≤ n2 (otherwise, H is already Ω(min{n, n

B logM/B
n
B)). Also,

we will consider that the algorithm never reads an empty block (i.e., a block where all elements are
empty slots)—if it does, then we can ignore the I/O and simply remove the B elements in memory
that the algorithm replaces with the I/O; doing so can only reduce the algorithm’s cost.

We say that a block is used if it is either a block used to store the input, or a block that has
ever been written by the algorithm. We regard each used block as a multi-set of size B, consisting
of the elements in the block (namely, we ignore the elements’ ordering in the block). Similarly, we
will also regard the memory as a multi-set of size M .

We define the state of an algorithm as a sequence Σ of multi-sets. The first multi-set of Σ is the
memory. Then, the rest of Σ corresponds to the sequence of all the used blocks, in ascending order
of their addresses. The algorithm’s initial state is clear: the memory contains M empty elements,
and the rest of Σ is the sequence of blocks containing our input. Note that, at any moment, the
number of used blocks is at most H.

The crux of our argument is to analyze how many new states can be generated from any state Σ

2

by performing one I/O. Let us first assume that the I/O is a read. After the I/O, only the memory
has changed in Σ (the contents of all the used blocks remain the same). Observe that there are
at most H ·

(M
B

)

ways that the memory can change. First, there are H used blocks the algorithm

can choose from. Second, no matter which block is read, the algorithm has
(

M
B

)

ways to select B
elements in memory to replace.

The situation of a writing I/O is only slightly more complex. After the I/O, the memory will
remain the same, but two types of changes can occur in the sequence of used blocks:

• An existing used block may have been replaced. There are at most H ·
(M
B

)

new states created

this way (at most H used blocks to write to, and
(

M
B

)

ways to form up a block from memory).

• A new used block may have been created. In this case, Σ had at most H−1 used blocks before
the I/O (otherwise, the algorithm will have to perform H + 1 I/Os eventually, contradicting
that H is a worst case bound). The new used block can be inserted into H positions in
relation to the existing used blocks. Hence, there are also at most H ·

(

M
B

)

new states created
this way.

In summary, a single I/O can generate at most 3H ·
(M
B

)

new states from Σ, no matter what

Σ is. It thus follows that by performing H I/Os, the algorithm can create at most (3H ·
(M
B

)

)H ≤
(3n2 ·

(

M
B

)

)H states from the initial state.
How many states must the algorithm be able to create to correctly solve the permutation

problem? At least, n!/(B!)n/B—there are n! possible permutations, and for each permutation, we
do not care about the element ordering in each block. Hence, we have (all the logs have base 2 by
default):

(

3n2 ·
(

M

B

))H

≥ n!

(B!)n/B

⇒ H log

(

3n2 ·
(

M

B

))

≥ log
n!

(B!)n/B

In general, for any integer x > 0, it holds that x log x
e ≤ log(x!) ≤ log(2.6

√
x) + x log x

e . Also, for
any integers x, y ≥ 0, it holds that log

(x
y

)

≤ y log ex
y . Using these inequalities, we have:

H

(

log(3n2) +B log
eM

B

)

≥ n log
n

e
− n

B

(

log(2.6
√
B) +B log

B

e

)

⇒ H

(

log(3n2) +B log
eM

B

)

≥ n log
n

B
− n

B
log(2.6

√
B)

When n and B are sufficiently large, we have:

3H (log n+B log(M/B)) ≥ n

2
log(n/B)

⇒ H ≥
n
6
log(n/B)

log n+B log(M/B)

When log n ≥ B log(M/B) or equivalently, n ≥ (M/B)B ≥ 2B (recall that M ≥ 2B), H = Ω(n).
Otherwise, H = Ω(nB logM/B

n
B).

References

[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.
CACM, 31(9):1116–1127, 1988.

3

