
Lecture Notes: External Interval Tree

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

This lecture discusses the stabbing problem. Let I be a set of N intervals in R. We want to store I
in a structure so that, given a query value q ∈ R, all the intervals in I containing q can be reported
efficiently. Such a query is called a stabbing query.

This problem can actually be solved by the persistent B-tree:

Lemma 1. We can pre-process a set of N intervals into a persistent B-tree so that a stabbing query
can be answered in O(logB N +K/B) I/Os, where K is the number of intervals reported.

We leave the proof to you. Both the space and query complexities are known to be optimal
(the optimality proof requires knowledge about some sophisticated lower bounds in the cell probe
model, and is beyond the scope of this course).

We will focus on the dynamic setting of the problem, where the structure needs to support
insertions and deletions, and yet, still answer queries efficiently. The persistent B-tree falls short
for this purpose. We will discuss an alternative structure called the external interval tree designed
by Arge and Vitter [1]. The structure uses linear space, answers a query in O(logB N+K/B) I/Os,
and supports an update (both insertion and deletion) in O(logB N) I/Os.

For simplicity, we assume that the intervals in I are in general position, such that all the (left
and right) endpoints in I are distinct. Also, we make the tall cache assumption that M ≥ B2.

1 External Interval Tree—The Static Version

Structure. The base tree of the external interval tree is a B-tree T on the set of 2N endpoints with
leaf parameter B ≥ 16 and branching parameter

√
B. Naturally, each node u in T corresponds to

a range σ(u)—called the slab of u—in the form [x1, x2). Specifically, if u is a leaf node, then x1 is
the smallest element stored in u, while x2 is the smallest element stored in the leaf succeeding u (if
such a leaf does not exist, x2 = ∞). If, on the other hand, u is an internal node with child nodes1

u1, u2, ..., uf , then σ(u) is the union of σ(ui) for all i ∈ [1, f]. Given i, j satisfying 1 ≤ i ≤ j ≤ f , we
define a multi-slab σu[i, j] of u as σ(ui)∪σ(ui+1)∪ ...∪σ(uj). There are

√
B+(

√
B−1)+ ...+1 < B

multi-slabs.
We associate u with a stabbing set Su of intervals: an interval s ∈ I is assigned to the stabbing

set of the lowest node in T whose slab contains s.
Consider an internal node v with child nodes u1, ..., uf . The fact s ∈ Sv implies that s is not

covered by the slab of any child node of v. Thus, s can be cut into at most 3 pieces: sl, sm, sr,
referred to as the left, middle, and right interval of s, respectively. Specifically, let i (j) be the
child slab σ(ui) (or σ(uj)) that covers the left (or right, resp.) endpoint of s. Then sl = s ∩ σ(ui),
sr = s∩σ(uj), and sm = s \ (sl ∪ sr). Note that sm 6= ∅ if and only if j ≥ i+2. Denote by Sl

v, S
m
v ,

Sr
v the set of left, middle, right intervals generated from S, respectively.

1We always list the child nodes of an internal node in ascending ordering, i.e., the leaf elements underneath ui are
smaller than those underneath of uj for any i < j.

1

Notice that sm is precisely the largest multi-slab of u spanned by s. We say that sm belongs to
the multi-slab, and that a multi-slab is underflowing if it has less than B intervals. As there are
less than B multi-slabs, no more than B2 intervals in total belong to the underflowing multi-slabs.

We associate v with several secondary structures:

• Lv(i) for each i ∈ [1, f]: A linked list2 storing in ascending order the left endpoints of the
intervals in Sl

v covered by σ(ui). We refer to the set {Lv(1), ..., Lv(f)} collectively as the left
structure of v.

• Rv(i) for each i ∈ [1, f]: A linked list storing in descending order the right endpoints of the
intervals in Sr

v covered by σ(ui). Refer to {Rv(1), ..., Rv(f)} collectively as the right structure
of v.

• For each multi-slab σv[i, j] that does not underflow, create a linked list Mv [i, j] containing
all the middle intervals of σv[i, j]. Refer to the set of all such linked lists collectively as the
middle structure of v.

• A persistent B-tree Uv on the at most B2 intervals of the underflowing multi-slabs. Refer to
Uv as the underflow structure of v.

Consider a leaf node z. Sz has at most B/2 intervals, noticing that each interval in Sz must
have both endpoints in σ(z). Hence, we can store Sz in a single block.

Space. Each leaf node uses only constant blocks. An internal node v, on the other hand, requires
O(

√
B + |Sv|/B) blocks. Since (i) each interval of I is assigned to only one stabbing set, and (ii)

there are O(N/(B
√
B)) internal nodes, the overall space consumption is O(N/B).

Query. We answer a stabbing query with a search value q by reporting intervals only from stabbing
sets. First, descend a root-to-leaf path Π of T to reach the leaf node whose slab contains q. For
each internal node v ∈ Π, the intervals in Sv covering q can be divided into four categories:

1. Their left intervals cover q.

2. Their right intervals cover q.

3. Their middle intervals cover q and belong to multi-slabs that do not underflow.

4. Their middle intervals cover q and belong to underflowing multi-slabs.

Let u1, ..., uf be the child nodes of u. Assume that q falls in σ(ui) for some i. To report the
intervals of Category 1 (Category 2 is symmetric), we scan Lv(i) in its sorted order and report the
intervals seen until either having exhausted the list or encountering a left endpoint greater than q.
The cost of doing so is O(1 +K1/B) where K1 is the number of Category-1 intervals.

To report the intervals of Category 3, we simply output all the intervals in Mv[i, j] for each
multi-slab σu[i, j] covering q that does not underflow. The cost is O(K3/B) I/Os, where K3 is the
number of Category-3 intervals.

Finally, we obtain the intervals of Category 4 by simply querying the persistent B-tree Uv,
which, by Lemma 1, takes O(1 + K4/B) I/Os, where K4 is the number of Category-4 intervals.
Overall, at v, we spend O(1 + Kv/B) I/Os, where Kv is the number of result intervals from Sv.
Thus, we conclude that the total query cost is O(logB N+K/B) I/Os (think: we have not discussed
how to process the leaf node on Π, but this is trivial. Why?).

2A linked list in external memory is simply a chain of blocks each of which contains Ω(B) elements except possibly
the last one.

2

Remarks. There are two crucial ideas behind the static version of the external interval tree. The
first one is to set the branching parameter to

√
B. This ensures that there are B multi-slabs at

each internal node, and that meanwhile the tree height remains O(logB N). The second one is to
use a structure of query time O(polylogB N) to manage B2 intervals at an internal node. A query
on such a “B2-structure” incurs only O(polylogB B2) = O(1) I/Os.

2 Making the External Interval Tree Dynamic

2.1 A Bruteforce Method

Let us start with a very simple trick that will be useful later. Consider, in general, a data structure
T that manages at most N elements. Assume that (i) T occupies space(N) blocks, (ii) can be
constructed in build(N) I/Os, and (iii) supports a query in query(N) +O(K/B) I/Os, where K is
the number of elements reported. Then, we have:

Lemma 2. T can be converted into a dynamic structure that has size space(N), answers a query in
O(query(N)+K/B) I/Os, and supports an insertion or a deletion in 1

B
· build(N) I/Os amortized.

To achieve the above purpose, it suffices to associate T with one buffer block in the disk.
Given an update, we simply place it in the buffer block without actually modifying T . This way,
the space complexity of T remains space(N). To answer a query, we first retrieve from T the
set S of qualifying elements in query(N) + O(|S|/B) I/Os. Remember, however, some elements
in S may no longer belong to the dataset due to the deletions in the buffer block. Conversely,
some new elements to be added to the dataset by the insertions in the buffer may also need to
reported. To account for these changes, it suffices to spend an extra I/O to inspect the buffer
block. In any case, |S| cannot differ from K by more than B. Hence, the total query cost is
query(N) + 1 +O((K +B)/B) = O(query(N) +K/B).

How to incorporate the buffered updates into T ? We do nothing until the buffer has accumulated
B updates. At this time, simply rebuild the entire T in build(N) I/Os, and then clear the buffer.
Since the rebuilding happens once every B updates, on average, each update bears only build(N)/B
I/Os.

2.2 Modifying the Structure

We need to slightly modify the static external interval tree to support updates. The base tree T
is now implemented as a weight-balanced B-tree with leaf parameter B and branching parameter√
B. Consider an internal node v in T with f child nodes. Before, each Lv(i) (1 ≤ i ≤ f) was

implemented as a linked list, but now we implement it as a B-tree indexing the left endpoints
therein. Similarly, Rv(i) now also becomes a B-tree on the right endpoints of the intervals in the
tree. Similarly, we implement each Mv[i, j] as a B-tree indexing left endpoints.

Remember that each multi-stab σv[i, j] of v has some middle intervals. We will stick to the
invariant that all those intervals are stored in either the middle structure Mv[i, j], or the underflow
structure Uv. Previously, a multi-slab σv[i, j] is “underflowing” if it has less than B middle intervals.
Now, we need to redefine this notion:

• If the middle intervals of σv[i, j] are in the underflow structure Uv, σv[i, j] is underflowing if
the number of those intervals is below B.

• Otherwise, σv[i, j] is underflowing is the number of middle intervals is below B/2.

3

At all times, the middle intervals of σv[i, j] are stored in Uv if and only if σv[i, j] is underflowing
(think: how do these intervals move between Uv and Mv[i, j]?).

The above changes do not affect the space consumption of the overall structure, and nor do
they affect the query algorithm or its cost.

2.3 The Underflow Structure

Recall that each internal node v is associated with a persistent B-tree Uv, which manages at most B2

intervals, and hence, uses O(B) space. It answers a stabbing query on those intervals in O(1+K/B)
I/Os. Under the tall cache assumption, we can easily build it in O(B) I/Os by reading all the at
most B2 intervals into memory, creating the structure in memory, and then writing it back to the
disk. Applying Lemma 2, we have already made Uv dynamic:

Corollary 1. Each underflow structure consumes O(B) space, answers a stabbing query (on the
indexed intervals) in O(1 + K/B) I/Os, and supports an insertion or a deletion in O(1) I/Os
amortized.

2.4 Insertion

Let s be the interval being inserted. We first insert the left and right endpoints of s in T (without
handling node overflows even if they occur) by traversing at most two root-to-leaf paths. In doing
so, we have also identified the node whose stabbing set should include s. If this is a leaf node z,
we simply add s to its stabbing set Sz.

Updating the Stabbing Set of an Internal Node. Consider that s needs to be added to the
stabbing set Sv of an internal node v. Assume that v has f child nodes u1, u2, ..., uf , and that the
left (or right) endpoint of s falls in σ(ui) (or σ(uj)) for some i, j. Cut s into a left interval sl, a
middle interval sm, and a right interval sr. Insert sl and sr into Lv(i) and Rv(j), respectively.

Given a non-empty sm, we check whether the middle intervals of σv[i + 1, j − 1] are stored in
Mv[i+ 1, j − 1]. If so, sm is inserted into Mv[i+ 1, j − 1] in O(logB N) I/Os.

Otherwise, we add sm to Uv, after which σv[i + 1, j − 1] may have B middle intervals such
that it no longer underflows. In this case, we retrieve all of them in O(1) I/Os (by performing a
stabbing query on Uv), delete them from Uv in O(B) amortized I/Os (see Corollary 1), initialize
a B-tree Mv[i + 1, j − 1] with those B intervals in O(1) I/Os. We can charge the O(B) cost over
the at least B/2 intervals that must have been added to Uv since the last movement of the middle
intervals of σu[i+ 1, j − 1] from Mv[i+ 1, j − 1] to Uv. Therefore, on average, each insertion bears
only O(B)/B

2
= O(1) I/Os for moving the B intervals from Uv to Mv[i+ 1, j − 1].

The cost so far is O(logB N) amortized.

Overflow Handling. We proceed to handle the overflowing nodes (if any) on the (at most two)
root-to-leaf paths we descended at the beginning. The overflows are treated in a bottom-up manner,
namely, first handling the at most two leaf nodes, then their parents, and so on.

In general, let u be a node that overflows, and v be its parent. Split the elements of u into u1
and u2 as in the weight-balanced B-tree. Let ℓ be the splitting value, i.e., all the elements in u1 (or
u2) are smaller (or at least, resp.) ℓ. Note that ℓ becomes a new slab boundary at v. We proceed
to fix the secondary structures of u1, u2 and v.

The intervals in Su (stabbing set of u) can be divided into three groups: those (i) completely
to the left of ℓ, (ii) completely to the right of ℓ, and (iii) crossing ℓ. The first group becomes Su1

,
the second becomes Su2

, while the intervals of the third group, denoted as Sup, should be inserted
into Sv. Su1

, Su2
, Sup can be obtained in O(|Su|/B) I/Os by scanning Su once. Also, in O(|Su|/B)

4

I/Os, we can obtain two sorted lists for Su1
, one sorted by the left endpoints of its intervals and the

other by their right endpoints (the details are left to you). We refer to the first (or second) copy as
the left (or right, resp.) copy of Su1

. We obtain the two copies also for Su2
and Sup, respectively,

in O(|Su|/B) I/Os.

Lemma 3. Let v be an internal node. Given the left and right copies of its stabbing set Sv, all the
secondary structures of v can be built in O(

√
B + |Sv|/B) I/Os.

Proof. Assume that v has f ≤
√
B child nodes. By scanning the left copy of Sv once, we can

generate the intervals indexed by Lv(i) for each i ∈ [1, f]. After which, Lv(i) can be built in
O(1 + |Lv(i)|/B) I/Os. Hence, the left structure of v can be constructed in O(

√
B + |Sv|/B) I/Os

in total. Similarly, its right structure can also be constructed from the right copy of Sv in the same
cost.

As there are less than f2 = B multi-slabs and M ≥ B2, by scanning the left copy of Sv once,
we can achieve two purposes:

• If a multi-slab has at least B middle intervals, all those intervals are stored in a file, sorted
by left endpoint.

• Otherwise, all its middle intervals remain in the memory.

Build the underflow structure Uv on the intervals in memory, and write Uv to the disk in cost
linear to the number of intervals in Uv. Finally, for each non-underflowing multi-slab σv[i, j], build
Mv[i, j] in cost linear to the number of middle intervals of σv[i, j].

Therefore, given Su1
and Su2

, the secondary structures of u1 and u2 (if they are internal nodes)
can be constructed in O(

√
B+ |Su1

|/B+ |Su2
|/B) = O(B+ |Su|/B) I/Os. At v, the task is to union

Sup into Sv. Given the left and right copies of Sup, it is easy to generate the left and right copies of
Sv in O(|Sv|/B) I/Os, after which the secondary structures of v can be rebuilt in O(

√
B+ |Sv|/B)

I/Os.
We now show that the cost of overflow handling does not increase the amortized insertion cost.

Remember that T is a weight-balanced B-tree with leaf parameter B and branching parameter
p =

√
B. Let w(u) and w(v) be the weights of u and v, respectively. It thus follows that w(v) ≤

4p · w(u). Observe that |Su| ≤ w(u) (as each interval in Su has both endpoints in the subtree of
u), and |Sv| ≤ w(v). In other words, the total cost of re-constructing the secondary structures of
u1, u2 and v is

O(
√
B + |Su|/B + |Sv|/B) = O(

√
B + w(u)/B + w(v)/B)

= O(
√
B + w(v)/B)

= O(
√
B + p · w(u)/B)

= O(w(u))

where the last equality used the fact that w(u) ≥ B
√
B.

Recall that, as a property of the weight-balanced B-tree, when u overflows, Ω(u) updates have
been performed under its subtree. Hence, we can amortize the O(w(u)) cost of overflow handing
over those updates so that each of them accounts for only constant I/Os. As each update needs to
bear such cost O(logB N) times, it follows that each insertion is amortized only O(logB N) I/Os.

5

2.5 Performing a Deletion

As shown above, the major difficulty in performing an insertion is the handling of node overflows.
Thus, it is natural to expect that it would be equally difficult to handle node underflows in deletions.
Interestingly, we can circumvent node underflows altogether by using a technique called global
rebuilding [2]. Recall that a query algorithm reports intervals only from stabbing sets. Hence, as
long as the stabbing sets are properly maintained, we are free to some “useless” elements in T .

Specifically, to delete an interval s, we first remove it from the secondary structures of the node
whose stabbing set contains s. This can be accomplished easily in O(logB N) I/Os by reversing the
corresponding steps in an insertion. We finish the deletion right here, in particular, leaving the left
and right endpoints of s in T . It is easy to see that the correctness of the query algorithm can still
be guaranteed. As no element is ever deleted from T , node underflows can never happen.

There is, however, a drawback. Since we permit useless endpoints to remain in T , over time
the number of endpoints in T can become so much larger than N , such that the height of T is
no longer O(logB N), which in turn compromises our query complexity. To remedy the drawback,
we reconstruct T from time to time. Specifically, we create T for the first time when the size of
the input set I has reached B (think: what to do before this moment?), by simpling inserting
those B intervals one by one. In general, suppose that the last reconstruction of T happened
when N = N0. After N0/2 updates, we simply rebuild T from scratch by incrementally inserting
each interval currently in I. Notice that now I can have at most 3N0/2 elements, so T can be re-
constructed in O(N0 logB N0) I/Os. This way, each of those N0/2 updates bears merely O(logB N0)
amortized I/Os. This ensures that the height of T remains O(logB N) at all times.

Summarizing all the above discussion, we have:

Theorem 1. Under the tall-cache assumption M ≥ B2, we can store N intervals in a structure
that consumes O(N/B) space, supports a stabbing query in O(logB N + K/B) I/Os (where K is
the number of reported intervals), and can be updated in O(logB N) amortized I/Os per insertion
and deletion.

Remark. Arge and Vitter [1] showed that the tall-cache assumption can be removed such that all
the complexities in Theorem 1 still hold even with M = 2B. They also removed the amortization
such that each insertion and deletion can be handled in O(logB N) I/Os in the worst case.

References

[1] L. Arge and J. S. Vitter. Optimal external memory interval management. SIAM J. of Comp.,
32(6):1488–1508, 2003.

[2] M. H. Overmars. The Design of Dynamic Data Structures. Springer-Verlag, 1987.

6

