
Lecture Notes: Distribution Sweeping

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

In this lecture, we will study the distribution sweeping technique proposed by Goodrich et al. [2].
This can be regarded as the combination of the divide-and-conquer and planesweep paradigms, and
has been leveraged to solve a large number of computational geometry problems in EM. Next, we
will discuss two representatives of such problems.

1 Skyline

The skyline (a.k.a. maxima) problem is defined as follows. The input is a set P of N points in Rd

in general position, i.e., no two points of P share the same coordinate on any dimension. Given a
point p ∈ Rd, denote its i-th (1 ≤ i ≤ d) coordinate as p[i]. A point p1 is said to dominate another
point p2, represented as p1 ≺ p2, if p1 has a smaller coordinate on all d dimensions, namely:

∀i = 1, ..., d, p1[i] < p2[i].

The goal is to compute the skyline of P , denoted as SKY (P), which includes all the points in P
that are not dominated by any other points, namely:

SKY (P) = {p ∈ P | ∄p′ ∈ P s.t. p′ ≺ p}. (1)

The skyline problem can be easily solved in linear I/Os in 2D space, after sorting the points of P
by x-coordinate (think: how). We will show that the 3D version of the problem can also be settled
in O(NB logM/B

N
B) I/Os. Our description below follows that of [3].

Algorithm. Our algorithm accepts as input a dataset P whose points are sorted by x-coordinate.
If N ≤ M (i.e., the memory capacity), we simply find the skyline of P using a memory-resident
algorithm1. The I/O cost incurred is O(N/B).

Now consider N > M . We divide P into s = Θ(M/B) partitions P (1), ..., P (s) with the same
size ⌈N/s⌉ (except perhaps one partition), such that each point in P (i) has a smaller x-coordinate
than all points in P (j) for any 1 ≤ i < j ≤ s. As P is already sorted on the x-dimension, the
partitioning can be done in linear cost, while leaving the points of each P (i) sorted in the same
way.

The next step is to obtain the skyline Σ(i) of each P (i), i.e., Σ(i) = SKY (P (i)). Since this
is identical to solving the original problem (only on a smaller dataset), we recursively invoke our
algorithm on P (i). Now consider the moment when all Σ(i) have been returned from recursion.
Our algorithm proceeds by performing a skyline merge, which finds the skyline of the union of all
Σ(i), that is, SKY (Σ(1) ∪ ... ∪ Σ(s)), which is exactly SKY (P). We enforce an invariant that,
SKY (P) be returned in an array where the points are sorted in ascending order of y-coordinate
(to be used by the upper level of recursion, if any). Due to recursion, the invariant implies that,
the same ordering has been applied to all the Σ(i) at hand.

1Note that this is not entirely rigorous because if N = M , then our memory has been fully occupied such that we

cannot even store any other “auxiliary” information needed to find the skyline in memory. But this is a very minor

issue; think: why?

1

z

x

y

λ(2)

λ(3)

1

2

3 4

5

6
8

λ(1)

7

Figure 1: Illustration of 3d skyline merge. The value of s is 3. Only the points already encountered
are shown. Points are labeled in ascending order of y-coordinate (which is also the order they
are fetched). Point 8 is the last one seen. Each cross is the projection of a point in the x-y
plane. Σ(1) contains points 2, 3, 7, Σ(2) includes 4, 6, 8, and Σ(3) has 5, 1. λ(1), λ(2), λ(3) equal
the z-coordinate of point 2, 8, 5, respectively. Point 8 does not belong to SKY (P) because its
z-coordinate is larger than λ(1) (i.e., it violates Inequality 2 on j = 1).

We now elaborate on the details of the skyline merge. SKY (P) is empty in the outset.
Σ(1), ...,Σ(s) are scanned synchronously in ascending order of y-coordinate. In other words, the
next point fetched is guaranteed to have the lowest y-coordinate among the points of all Σ(i) that
have not been encountered yet. As s = Θ(M/B), the synchronization can be achieved by assigning
a block of memory as the input buffer to each Σ(i). We maintain a value λ(i), which equals the
minimum z-coordinate of all the points that have already been seen from Σ(i). If no point from
Σ(i) has been read, λ(i) = ∞.

We decide whether to include a point p in SKY (P) when p is fetched by the synchronous scan.
Suppose that p is from Σ(i) for some i. We add p to SKY (P) if

p[3] < λ(j),∀j < i (2)

where p[3] denotes the z-coordinate of p. See Figure 1 for an illustration. The lemma below shows
the correctness of this rule.

Lemma 1. p ∈ SKY (P) if and only if Inequality 2 holds.

Proof. Clearly, p cannot be dominated by any point in Σ(i + 1), ...,Σ(s) because p has a smaller
x-coordinate than all those points. Let S be the set of points in Σ(j) already scanned before p, for
any j < i. No point p′ ∈ Σ(j) \ S can possibly dominate p, as p has a lower y-coordinate than p′.
On the other hand, all points in S dominate p in the x-y plane. Thus, some point in S dominates
p in R3 if and only if Inequality 2 holds.

We complete the algorithm description with a note that a single memory block can be used as
an output buffer, so that the points of SKY (P) can be written to the disk in linear I/Os, by the
same order they entered SKY (P), namely, in ascending order of y-coordinate. Overall, the skyline
merge finishes in O(N/B) I/Os.

2

I/O Cost. Denote by F (N) the I/O cost of our algorithm on a dataset with cardinality N . It is
clear from the above discussion that

F (N) =

{

O(N/B) if N ≤ M
∑s

i=1
F (|P (i)|) +O(N/B) otherwise

where
∑s

i=1
|P (i)| = N , and |P (i)| ≤ ⌈N/s⌉. Solving the recurrence gives F (N) = O(NB logM/B

N
B).

Remark. Note the “distribution” and the “sweep” components of the above algorithm. Also note
that the algorithm used the idea of “order alternation”. Namely, the dataset we feed into the next
level of recursion is sorted by x-coordinate, whereas on return from the recursion, we have got a
dataset sorted by y-coordinate. It is also known that Ω(NB logM/B

N
B) is a lower bound for the class

of all comparison-based algorithms (the algorithm we have presented belongs to this class).

2 Orthogonal Segment Intersection

In the orthogonal segment intersection problem, we are given a set R of horizontal segments and a set
S of vertical segments, all in the plane R2. The goal is to report all pairs of segments (r, s) ∈ R×S
such that r intersects s. We assume once again that the endpoints of the segments in R ∪ S are in
general position: no two endpoints share the same x-coordinate or y-coordinate.

Set N1 = |R| and N2 = |S|. We will describe an algorithm proposed in [1] that solves the
problem in O(N1

B logM/B
N1

B + N2

B logM/B
N2

B +K/B) I/Os, where K is the number of pairs reported.

2.1 Linked List

We will need a linked list to support the following operations on a set S of elements:

• Insertion: add an element into S.

• Scan: visit all the elements of S.

In RAM, it is easy to design such a linked list that occupies O(|S|) space, supports an insertion
in O(1) time, and a scan in O(|S|) time. In EM, if allowed a dedicated block of memory, we can
implement a linked list with the following guarantees:

• The space consumption is O(|S|/B) at all times.

• Each insertion takes O(1/B) amortized I/Os.

• A scan takes O(|S|/B) I/Os.

We leave the design of such a linked list to you.

2.2 Algorithm

Let us now return to the orthogonal segment intersection problem. First, if N1 + N2 ≤ M , then
we can easily solve the problem in memory, entailing cost O((N1 +N2)/B +K/B) I/Os. Next, we
consider N1 +N2 > M .

We assume that all the segments of R∪ S are contained in some (big) rectangle D = [α, β]×R
(note that α may be −∞ and β may be ∞). We refer to D as the data space. A segment r ∈ R is
(i) two-sided if r touches neither the left nor the right boundary of D, or (ii) one-sided if r touches
exactly one of the left and right boundaries of D. We assume that no segment r ∈ R touches both

3

the left and right boundaries of D, and that no segment s ∈ S touches the left or right boundary
of D (think: why are these fair assumptions?).

Let X be the set of x-coordinates of all non-grounded endpoints p of the segments in R ∪ S
satisfying, namely, p is on neither the left nor the right boundary of D. Let Y be the set of y-
coordinates of the endpoints in R ∪ S. Set N = |X|. Prior to invoking our algorithm, we assume
that we are given X and Y , both of which should have been sorted. The sorting demands only
O(NB logM/B

N
B) I/Os, which is affordable.

Divide the data space D into s = Θ(M/B) disjoint vertical slabs, each of which has the form
[x1, x2] × R, and should contain ⌈N/s⌉ x-coordinates in P (except perhaps one slab). Denote
by σ1, σ2, ..., σs the slabs in ascending order of x-coordinate. We initialize an empty linked list
(Section 2.1) for each slab, by allocating it a memory block.

We perform a sweeping process to move a horizontal line ℓ from y = −∞ to y = ∞. We carry
out different actions when ℓ hits different endpoints of the segments in R ∪ S:

• Event 1: If ℓ hits the lower endpoint of a segment s ∈ S, insert it into the linked list of the
slab that contains s.

• Event 2: If ℓ hits the upper endpoint of a segment in S, do nothing.

• Event 3: Now consider ℓ hits a segment r ∈ R (since r is horizontal, this means that the entire r
is contained in ℓ). If r does not span any slab, ignore it, and continue the sweeping. Otherwise,
suppose that r spans slabs σi1 , σi1+1, ..., σi2 , for some i1, i2 such that 1 ≤ i1 ≤ i2 ≤ s. For
each j ∈ [i1, i2], we perform a scan operation on the linked list of σj, and divide the segments
there into two sets: (i) the set Σ1(r, j) of segments completely below ℓ, and (ii) the set Σ2

of segments crossing ℓ. For each segment s ∈ Σ2(r, j), we report (r, s) as a result pair. After
this is done, we destroy the linked list entirely, and rebuild it by inserting the segments only
in Σ2(r, j). The segments of Σ1(r, j) are discarded—notice that they cannot intersect any
other segments of R to be hit by ℓ later.

The sweeping is a continuous process, but the events are discrete, and can be generated easily by
scanning Y .

After the sweeping process, we recurse into each slab. Specifically, for each i ∈ [1, s], define:

Ri = {r ∩σi | r ∈ R, and r does not span σi}

Si = S ∩σi.

We now recursively solve the orthogonal segment intersection problem on Ri and Si in the data
space σi, for each i ∈ [1, s] separately. Note that a two-sided r may become one-sided in a slab.

Analysis. We will first analyze the cost of a sweeping process. Suppose that the process reports
K ′ result pairs. We will prove that the process performs O(N/B +K ′/B) I/Os. For this purpose,
we will bound the cost of handling Events 1, 2, and 3 separately. First, notice that the generation
of all the events requires O(N/B) I/Os (by scanning Y once). Second, Event 1 produces O(N)
insertions to linked lists, which perform O(N/B) I/Os in total, while Event 2 entails no cost. Next,
we focus on Event 3.

It is easy to see that Event 3, if triggered by ℓ hitting a segment r ∈ R, performsO(
∑

j(|Σ1(r, j)|+
|Σ2(r, j)|)/B) I/Os. Therefore, the total cost of handling Event 3 is bounded by

O

∑

r∈R

∑

j

|Σ1(r, j)| + |Σ2(r, j)|

B

 . (3)

4

Let us make two crucial observations:

• Every segment s ∈ S belongs to the Σ1(r, j) of at most one r. This is because once s falls
into Σ1(r, j), it will be discarded right away. It thus follows that

∑

r∈R

∑

j |Σ1(r, j)| ≤ N .

• |Σ2(r, j)| equals precisely the number of result pairs that are produced by r in the sweeping
process. It thus follows that

∑

r∈R

∑

j |Σ2(r, j)| ≤ K ′.

Therefore, (3) is bounded by O(N/B +K ′/B).
Now it remains to analyze the recursive part. Two facts are easy to observe. First, recall that

we have assumed the availability of two ordered lists X and Y . Hence, before starting the recursion
into slab σi (i ∈ [1, s]), we must prepare the corresponding ordered lists Xi, Yi. We can prepare all
of X1, ...,Xs, Y1, ..., Ys in O(N/B) I/Os (think: how?). Second, every result pair is reported only
once.

Let F (N)+O(K/B) be the cost of solving the orthogonal segment intersection problem. Define
Ni = |Xi| for each i ∈ [1, s]. Then, we have:

F (N) =

{

O(N/B) if N ≤ M
∑s

i=1
F (Ni) +O(N/B) otherwise

Notice that
∑s

i=1
Ni = N , because (i) each non-grounded endpoint of a segment in R falls in

exactly one slab, and (ii) both endpoints of a segment in S fall in the same slab. It also holds that
Ni ≤ ⌈N/s⌉. Solving the recurrence gives F (N) = O(NB logM/B

N
B).

Remark. We have obtained an algorithm solving the orthogonal segment intersection problem in
O(N1

B logM/B
N1

B + N2

B logM/B
N2

B +K/B) I/Os. The term K/B is clearly optimal. One can prove
that the other terms are also optimal in the class of comparison-based algorithms.

References

[1] L. Arge. External-memory algorithms with applications in gis. In Algorithmic Foundations of

Geographic Information Systems, pages 213–254, 1996.

[2] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory computational
geometry. In FOCS, pages 714–723, 1993.

[3] C. Sheng and Y. Tao. Finding skylines in external memory. In PODS, pages 107–116, 2011.

5

