
Lecture Notes: Comparison-Based Lower Bounds

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

We have proved in a previous lecture that the permutation problem on n elements requires
Ω(min{n, n

B logM/B
n
B}) I/Os to solve in the indivisibility model. This immediately implies the same

lower bound for sorting—if we can sort n elements in x I/Os, then we can also permute them in O(x)
I/Os. This, in turn, means that no “indivisible” EM algorithm can always sort in o( nB logM/B

n
B )

I/Os, because this will violate the aforementioned lower bound when logM/B
n
B = O(B).

How about logM/B
n
B = ω(B)? Is it possible to sort in o( nB logM/B

n
B ) in this case? In the

indivisiblity model, the answer is yes—there is a trivial, but unrealistic, algorithm to perform
sorting O(n) I/Os (think: how?). However, in the EM model, no algorithm is known to be able
to achieve the purpose. This raises an intriguing question—is there an ingenious O(n)-cost EM
algorithm yet to be discovered, or is the indivisibility model simply too powerful in the scenario
logM/B

n
B = ω(B)? This is still an open question to this day.

In this lecture, we will hit a middle ground between the EM and indivisibility models. We will
define a new model called the I/O comparison model, which is more restrictive than the indivisibility
model (in terms of what an algorithm can do). This new model still captures a broad class of EM
algorithms, known as the comparison class. We will see that any algorithm in the I/O comparison
model must perform Ω( nB logM/B

n
B ) I/Os to sort, for all values of n,B, and M .

1 Review: Comparison-Based Algorithms in Internal Memory

Let us re-visit the comparison model in internal memory for lower bound analysis. Let S be a set
of n elements, denoted as e1, e2, ..., en, respectively. Element ei (1 ≤ i ≤ n) is said to have id i. An
algorithm under this model—referred to as a comparison-based algorithm—can be described by a
binary decision tree T , defined as follows. Each internal node u of T has two child nodes, and is
associated with two element ids i, j. When the algorithm is at u, it always performs a comparison
between ei and ej . If ei < ej , the algorithm moves to the left child of u; otherwise (ei > ej), the
algorithm moves to the right child of u. A leaf node z of T is associated with an answer, which
is the final output of the algorithm when it reaches z. The algorithm must always start from the
root of T .

It is important to note that T is given before seeing S. In other words, regardless of the
contents of e1, e2, ..., en, the algorithm must always behave according to the same T . The cost of
the algorithm is the height of T .

It is usually quite straightforward to lower bound the cost of comparison-based algorithms—all
we need to do is to see how many different answers an algorithm must be able to produce. For
example, for sorting, an algorithm must produce n! different answers. This means that T must
have at least n! leaves. Hence, the height of T must be at least log2 n! = Ω(n log n).

2 The I/O Comparison Model

We are now ready to define the I/O comparison model. Let S be a set of n distinct elements
e1, ..., en. The memory is a set of at most M elements in S, while the disk is a sequence of blocks,
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each of which is a set of B elements. The values of M and B satisfy M ≥ 2B. S is given in a
disk-resident array storing the sequence e1, e2, ..., en.

An algorithm is modeled as an I/O decision tree TIO defined as follows. Each internal node u
of TIO is associated with a set I(u) of at most M element ids, corresponding to the at most M
elements in memory. Furthermore, u belongs to one of the following three types:

• Read node: In this case, u is also associated with an integer addr (u) ≥ 1. When the algorithm
is at u, it loads the addr (u)-th disk block into memory, perhaps overwriting some existing
elements in memory. Node u has only one child u′ such that I(u′) is the set of ids of the
elements in memory after the read.

• Write node: In this case, u is also associated with an integer addr (u) ≥ 1, and an operation
tag op(u) whose value can be “c” or “r”. If op(u) = c, the algorithm (when at u) selects B
elements from memory, and writes them into a new block, and make the block the addr (u)-th
one in the disk. If op(u) = r, the algorithm selects B elements from memory, and writes
them into the addr (u)-th disk block (the original contents of the block are erased). In any
case, u has only one child u′ with I(u) = I(u′).

• Comparison node: It sorts the at most M elements whose ids are in I(u), and descends into a
different child for each different ordered permutation of those elements. For each child node
u′, I(u′) = I(u).

If u is the root, then u must be a read node with I(u) = ∅. We will refer to read and write nodes
collectively as I/O nodes. Finally, each leaf node z is associated with an answer, which is the final
output of the algorithm when it reaches z.

TIO is given before seeing S, namely, the algorithm must behave according to TIO regardless
of the contents of e1, ..., en. In particular, note that the id-set I(u) of each node u is a part of
TIO , and hence, does not change with S. In other words, whenever the algorithm reaches u, the
memory-resident elements always have the same ids. Similarly, the fields op(u) and addr (u), if
applicable, do not change with S, either. The cost of the algorithm is the maximum number of I/O
nodes along any root-to-leaf path of TIO . Note that comparison nodes are not counted.

It is not hard to observe that the I/O comparison model is subsumed by the indivisibility model.
Specifically, given an algorithm in the former model that performs x I/Os, we can easily obtain an
algorithm in the latter model that performs x I/Os. The opposite, however, is not true. As noted
earlier, there is a trivial O(n)-cost sorting algorithm in the indivisibility model. In the next section,
we will prove the absence of such an algorithm in the I/O comparison model.

Neither the I/O comparison model nor the EM model subsumes the other. A lower bound in
the I/O comparison model only applies to a set of EM algorithms that can be implemented in the
I/O comparison model—the set is known as the comparison class. It is worth mentioning that both
external sort and distribution sort belong to this class.

3 Sorting Lower Bound in the I/O Comparison Model

Next, we prove that Ω( nB logM/B
n
B ) is a sorting lower bound in the I/O comparison model. Our

argument is mainly due to Aggarwal and Vitter [1] with some ideas from Erickson [2]. We will need
the following basic property of I/O decision trees:

Lemma 1. Let u be a node in an I/O decision tree TIO , and I⋆ any subset of I(u). Suppose that
there is a comparison node v such that (i) v is a proper ancestor of u, and (ii) I⋆ ⊆ I(v). Then,
the relative ordering of the elements with ids in I⋆ is fixed at u.
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Proof. By definition of TIO , when the algorithm descends from v (to any of its child nodes), it
determines the relative ordering of the elements with ids in I(v).

3.1 Regular I/O Decision Trees

Let us first prove the lower bound on regular I/O decision trees TIO . Specifically, we say that TIO

is regular if all the following hold:

• every node is useful, namely, it can be reached by at least one input S;

• every read node is the parent of a comparison node;

• the parent of every comparison node is a read node;

• on any root-to-leaf path of TIO , the first 2n/B nodes must implement an initialization phase
as follows. Denote those nodes as u1, v1, u2, v2, ..., un/B , vn/B , in the order the appear on the
path. Each ui (1 ≤ i ≤ n/B) is a read node, and each vi is a comparison node. Furthermore,
node ui reads the i-th input block of S, and makes sure that, after the read, the memory
contains only the B elements of that block (i.e., these elements will then be overwritten after
the next input block is read).

Since there must be at least n! leaves and each comparison node obviously has a fanout at most
M !, at least one root-to-leaf path of TIO has Ω(logM ! n!) = Ω( n logn

M logM ) comparison nodes. By the
regularity of TIO , there are Ω( n

M logM n) read nodes on that path. This is already a lower bound
on the cost of TIO , but it is much looser than what we aim for. The cause of looseness is that we
have severely over-estimated how many child nodes a comparison node can have.

This is particularly obvious for each comparison node v during the initialization phase. Note
that I(v) has a size of B. Therefore, v can have only B! child nodes, much less than M !.

Let us now consider any comparison node v after the initialization phase. Denote by u the
parent of v (i.e., u is a read node). Define I1, I2 as follows:

I2 = the set of ids of the B elements read by u

I1 = I(v) \ I2

We now prove a crucial fact:

Lemma 2. The relative ordering of the elements in I1 is fixed at node v. The same is true with
respect to the elements in I2.

Proof. We will first prove the claim about I1. Simply consider the lowest comparison node v̂ that
is a proper ancestor of v. Note that v̂ always exists because v is after the initialization phase. It
is clear that I(u) = I(v̂) because the path from v̂ to u contains nothing but write nodes. Note
also that I1 ⊆ I(u) because every id in I(v) must belong to either I2 or I(u). This means that
I1 ⊆ I(v̂). Hence, by Lemma 1, the claim is true about I1.

Let us now look at I2. As u occurs after the initialization phase, the block it reads is either
an input block of S, or a block written by the algorithm itself. It thus follows that the elements
with ids in I2 have co-existed in memory before. Let û be the read node that made this happen
for the first time, and v̂ the child of û. It thus follows that I2 ⊆ I(v̂) and v̂ is a proper ancestor of
v. Hence, by Lemma 1, the claim is also true about I2.

With the above said, we can take the view that each ordered permutation of the elements with
ids in I(u) is created in three steps:
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1. Line up |I1|+ |I2| empty slots.

2. Choose |I1| empty slots, and place the elements with ids in I1 at those slots, according to
their already-determined ordering.

3. Place the elements with ids in I2 at the remaining slots, according to their already-determined
ordering.

The maximum number of permutations that can be created equals
(|I1|+|I2|

|I2|

)

, which is at most
(

M
B

)

given that |I1|+ |I2| ≤ M , |I2| = B, and M ≥ 2B. In other words, the fanout of v is at most
(

M
B

)

.
Consider the moment when the algorithm has just finished the initialization phase on S. Let

u⋆ be the node that the algorithm is standing at currently. The subtree of u⋆ must have at least
n!/(B!)n/B leaves (think: why?). Therefore, at least one u⋆-to-leaf path has at least the following
number of comparison nodes:

log(M
B
)

n!

(B!)n/B
=

log n!− log(B!)n/B

log
(M
B

)

= Ω
( n

B
logM/B

n

B

)

.

By regularity, there must be the same number of read nodes on that path.

3.2 Reduction to Regular I/O Decision Trees

It remains to discuss I/O decision trees TIO that are not regular. Suppose that TIO has cost x. We
will convert it into a regular I/O decision tree T ′

IO
with cost x+ n/B. Our result in the previous

section suggests that x+ n/B = Ω( nB logM/B
n
B ). It thus follows that x = Ω( nB logM/B

n
B ).

Let A be the algorithm described by TIO . Our conservation is based on several principles.
First, we impose a compulsory initialization phase before starting to execute A. Second, whenever
A executes a read node, we always force the execution of a comparison node—doing so allows us
to perform the largest number of comparisons possible. Third, we follow every write node of A
faithfully. Next, we explain the details.

We start by building up the first 2n/B levels of T ′
IO

that correspond to the initialization phase.
Each node v at the (2n/B)-th level (the root is at level 1) is a comparison node with B! child nodes.
We copy the entire TIO to be the subtree rooted at each child node of v. Note that TIO is copied
(B!)n/B times this way. Our current T ′

IO
is now an I/O decision tree correctly solving the sorting

problem (think: why? Hint: take an input S, and see which leaf the algorithm will fall into).
T ′
IO

may not be regular at this point. We can make it so with a depth-first traversal of the
subtree of each node at the (1 + 2n/B)-th level (this subtree is a copy of TIO). Let u the node we
are currently at:

• Case 1: u is a read node. Let T ′ be the subtree of u. We remove T ′, and create a child
comparison node v for u. Then, for each possible ordered permutation of the elements with
ids in I(v), create a child for v, and copy the entire T ′ to be the subtree rooted at this child
(T ′ is copied as many times as the number of children of v). Continue the depth-first traversal
into the left-most subtree of v.

• Case 2: u is a write node. No change; simply continue the traversal.

• Case 3: u is a comparison node. Only one child—say u′—of u is useful now (think: why).
Remove u from T ′

IO
, and make u′ the only child of the parent of u.
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The T ′
IO

thus constructed fulfills our purposes (think: why? Hint: prove the correctness induc-
tively).

4 Remarks

We have defined the comparison model in internal memory and external memory by assuming that
the input set S has n distinct elements. This is purely for the convenience of studying sorting.
Comparison-based algorithms are also popular for solving other problems that involve identical
elements. One example is the element distinctness problem, where the input is a multi-set S of n
elements, and the goal is to decide whether two elements in S are identical (namely, if S is a set or
really a multi-set). Note that the decision tree defined in Section 1 is not appropriate for solving
the element distinctness problem, because we have not defined what to do when a node finds out
ei = ej , where ei, ej are the two elements compared at the node. However, this issue can be easily
fixed by defining a slightly different decision tree (and hence, a slightly different comparison model),
where each node has three branches, instead of two. One can show that any such decision tree
must incur Ω(n log n) comparisons to solve the element distinctness problem. Similar extensions
can also be made to I/O decision trees. Such an extended I/O decision tree needs to perform
Ω( nB logM/B

n
B ) I/Os to solve the element distinctness problem.
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