CSCI5020 External Memory Data Structures: Exercise List 4

In the following problems, B is the block size, and M is the memory capacity.
Problem 1. Assuming $M \geq B^{2}$, describe an algorithm to construct an external interval tree on N intervals in $O\left(\frac{N}{B} \log _{B} N\right)$ I/Os.

Problem 2 (Ray Shooting on Rays). Let S be a set of N horizontal rays in \mathbb{R}^{2} shooting towards right, i.e., each ray in S has the form $[x, \infty) \times y$. Given a point q in \mathbb{R}^{2}, a ray shooting query finds the first ray that is hit by a vertical ray shooting upwards from q. Describe a structure that uses $O(N / B)$ space and answers a ray shooting query in $O\left(\log _{B} N\right)$ I/Os. Make your structure fully dynamic such that each insertion and deletion can be supported in $O\left(\log _{B} N\right)$ I/Os.
Problem 3. Let $L=\left\{\ell_{1}, \ldots, \ell_{l}\right\}$ be a set of l vertical lines in \mathbb{R}^{2}, where $l=\sqrt{B}$. Let S be a set of N horizontal segments such that each segment in S has its endpoints on two different lines in L. Given a vertical ray r shooting downwards from a point, a query reports all the segments in S intersecting r. Give a structure on S that consumes $O(N / B)$ space, and answers a query in $O(1+K / B)$ I/Os, where K is the number of segments reported. Your structure also needs to support an insertion and a deletion in $O\left(\log _{B} N\right)$ I/Os amortized, assuming $M \geq B^{2}$.
Problem 4 (Ray Intersecting Segments). Let S be a set of N horizontal segments in \mathbb{R}^{2}. Given a vertical ray r shooting downwards from a point, a query reports all the segments in S intersecting r. Describe a structure on S that consumes $O(N / B)$ space, and answers a query in $O\left(\log _{B}^{2} N+K / B\right) \mathrm{I} / \mathrm{Os}$, where K is the number of segments reported. Your structure also needs to support an insertion and a deletion in $O\left(\log _{B} N\right)$ I/Os amortized, assuming $M \geq B^{2}$.

