## CSCI5020 External Memory Data Structures: Exercise List 1

In the following problems, $B$ is the block size, and $M$ is the memory capacity. we assume that $M$ is a multiple of $B$.

Problem 1 (Group-by). Let $S$ be a set of $n$ tuples, each of which has the form $(k, v)$, where $k$ (or $v$, resp.) is called the key (value, resp.) of the tuple. We want to report, for each distinct key $k$ that appears in $S$, the sum of the values of all the tuples whose keys are equal to $k$. Give an algorithm that achieves this purpose in $O\left(\frac{n}{B} \log _{M / B} \frac{t}{B}\right) \mathrm{I} / \mathrm{Os}$, where $t$ is the number of distinct keys in $S$.

Problem 2 ( $f$-Splitter). Let $S$ be a set of $n$ elements in $\mathbb{R}$. We want to find $f$ splitters $p_{1}, p_{2}, \ldots, p_{f} \in S$ in ascending order such that there are $O(n / f)$ elements in the range ( $p_{i-1}, p_{i}$ ] for each $i \in[1, f+1]$, defining dummy splitters $p_{0}=-\infty$ and $p_{f+1}=\infty$. Describe an algorithm to solve the problem in $O(n / B) \mathrm{I} /$ Os for $f=M / B$ (note: the algorithm we discussed in class supports $f=\sqrt{M / B})$.
Problem 3 ( $\boldsymbol{k}$-Partitioning). Let $S$ be a set of $n$ elements in $\mathbb{R}$. Let $k$ be an integer such that $n$ is a multiple of $k$. We want to partition $S$ into $k$ disjoint subsets $S_{1}, S_{2}, \ldots, S_{k}$ such that (i) all the elements of $S_{i}$ are smaller than those of $S_{j}$, for any $i, j$ satisfying $1 \leq i<j \leq k$, and (ii) $\left|S_{i}\right|=n / k$ for each $i \in[1, k]$. It is required that these subsets be output in $k$ arrays: an array for $S_{1}$, followed by an array for $S_{2}$, and so on. Prove that in the indivisibility model, when $\log _{2} n \leq B \log _{2} \frac{M}{B}$, any algorithm must incur $\Omega\left(\frac{n}{B}\left\lceil\log _{M / B} k\right\rceil\right)$ I/Os solving this problem in the worst case.

