Exercises for CSCI5010

Prepared by Yufei Tao

Problem 1*. Let $T : \mathbb{R}^d \to \mathbb{R}^d$ be an affine transformation. Given a set P of points in \mathbb{R}^d, define by $T(P) = \{T(p) \mid p \in P\}$, namely, $T(P)$ is the set of points obtained by applying the affine transformation T to P. Prove: if $R \subseteq P$ is an ϵ-kernel of P, then $T(R)$ is an ϵ-kernel of $T(P)$.

Hint: Given a directional vector u, the width of P at direction u can be calculated as

$$W_u(P) = \left(\max_{p \in P} u \cdot p \right) - \left(\min_{p \in P} u \cdot p \right)$$

where $u \cdot p$ is the dot product of vectors u and p. To prove the claim, use your knowledge from linear algebra to figure out how a dot product would change under an affine transformation. Recall that an affine transformation is: $T(p) = Ap + b$ where A is a $d \times d$ matrix, and both p and b are $d \times 1$ vectors.

Problem 2* ((1 − ϵ)-Approximate Top-1 Search). Let P be a set of points in \mathbb{R}^d where d is a constant, and each point has a positive coordinate on every dimension. We will view each point $p \in P$ as a d-dimensional vector $p = (p[1], p[2], \ldots, p[d])$ where $p[i]$ $(1 \leq i \leq d)$ is the i-th coordinate of p. Given a directional vector u where $u[i] \geq 0$ for each $i \in [d]$, define

$$\text{top}_u(P) = \max_{p \in P} u \cdot p$$

where $u \cdot p$ is the dot product of vectors u and p. Given $0 < \epsilon < 1$, describe an algorithm that computes in $O(n)$ expected time a subset $R \in P$ such that

- $|R| = O(1/\epsilon^d)$, and
- for any directional vector u, it holds that $\text{top}_u(R) \geq (1 - \epsilon) \cdot \text{top}_u(P)$.

Hint: Add the origin to P.

Problem 3. Prove the order-reversal property of dual transformation.

Problem 4. Prove the intersection preserving property of dual transformation.

Problem 5. Let ℓ_1 and ℓ_2 be two parallel non-vertical lines in the primal space \mathbb{R}^2. Prove: their vertical distance equals the distance of points ℓ_1^* and ℓ_2^* in the dual space.

Problem 6. Let A, B, C, and D be four points in the primal space \mathbb{R}^2 that have distinct x coordinates. Suppose that triangle ABC has an area smaller than ABD. Let ℓ be the line passing points A and B in the primal space. Prove: in the dual space, point ℓ^* has a smaller vertical distance to line C^* than to line D^*.

Note: The vertical distance from a point (a, b) to a line $y = c_1 x - c_2$ equals $|b - (c_1 \cdot a - c_2)|$.