Exercises for CSCI5010

Prepared by Yufei Tao

Problem 1. Let \(P \) be a set of \(n \) points in \(\mathbb{R}^2 \). A slab is the region between two parallel lines (inclusive of the two lines). The **perpendicular width** of a slab is the (perpendicular) distance between its boundary lines. Suppose that parallel lines \(\ell_1 \) and \(\ell_2 \) define a width the smallest perpendicular width among all the slabs enclosing all the points of \(P \). Prove: either \(\ell_1 \) or \(\ell_2 \) passes two points of \(P \).

Problem 2*. Let \(P \) be a set of \(n \) points in \(\mathbb{R}^2 \). Describe an algorithm to find a slab with the minimum perpendicular width that encloses all the points of \(P \). Your algorithm should run in \(O(n \log n) \) time.

 Hint: Duality and Problem 1 helps.

Problem 3. Let \(L \) be a set of \(n \) non-vertical lines in \(\mathbb{R}^2 \) where no two lines are parallel. Explain how to compute in \(O(n) \) time an axis-parallel rectangle that contains all the \(\binom{n}{2} \) intersect points of those lines.

Problem 4*. Let \(P \) be a set of \(n \) points in \(\mathbb{R}^2 \), and \(k \leq n \) be an integer. Describe an algorithm to find a slab with the minimum perpendicular width that encloses precisely \(k \) points of \(P \). Your algorithm should run in \(O(n^2 \log n) \) time.

 Hint: Think in the direction of Problem 1.

Problem 5*. Let \(P \) be a set of \(n \) points in \(\mathbb{R}^2 \). Describe an algorithm to find the smallest-area triangle whose vertices are from \(P \). Your algorithm should finish in \(O(n^2 \log n) \) time.

 Hint: Revisit Problem 6 of the previous exercise list.