Exercises

Problem 1. Prove: every polygon (not necessarily convex) of \(n \) vertices can be triangulated into \(n - 2 \) triangles. (Hint: induction.)

Problem 2. Let \(G \) be a polygon (not necessarily convex); denote by \(|G|\) the number of vertices in \(G \). Suppose that we divide \(G \) into smaller polygons \(G_1, G_2, \ldots, G_t \) for some \(t \geq 1 \) using non-intersecting diagonals. Prove: \(\sum_{i=1}^{t} |G_i| = O(|G|) \).

Problem 3. Consider the following algorithm for triangulating a polygon \(G \):

1. add diagonals to break \(G \) into non-overlapping polygons \(G_1, G_2, \ldots, G_t \) without split vertices
2. for \(i = 1 \) to \(t \) do
3. add diagonals to break \(G_i \) into non-overlapping polygons without merge vertices
4. for every polygon \(G' \) obtained at Line 3 do
5. triangulate \(G' \) using a monotone algorithm

Prove: the above algorithm runs in \(O(n \log n) \) time where \(n \) is the number of vertices in \(G \).

Problem 4. Let \(G \) be an x-monotone polygon whose \(n \) edges are given in clockwise order. Describe an algorithm to sort the vertices of \(G \) by x-coordinate in \(O(n) \) time.

Problem 5 (Polygon Intersection). Let \(G_1 \) and \(G_2 \) be two convex polygons, whose edges are given in clockwise order. Describe an algorithm to compute the intersection of \(G_1 \) and \(G_2 \) in \(O(n) \) time, where \(n \) is the total number of edges in \(G_1 \) and \(G_2 \). Note: the intersection is a polygon and you need to output its edges in clockwise order. (Hint: planesweep.)

Problem 6* (Point in Polygon) Let \(G \) be a convex polygon of \(n \) vertices, which are given in clockwise order. Given an arbitrary point \(q \), describe an algorithm to decide whether \(q \) is inside or outside \(G \) in \(O(\log n) \) time. (Hint: general binary search; see an earlier exercise.)