
Grid Decomposition — Finding
the Closest or Close Pairs

Yufei Tao

Chinese University of Hong Kong

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

We will learn the grid decomposition method which is a powerful

technique for solving many difficult problems in fixed-dimensional spaces.

In particular, we will look at two such problems: closest pair and close

pairs. These problems appear very similar to each other, but differ

significantly in their solutions.

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Closest Pair and Close Pairs

Let P be a set of points Rd . The objective of the closest pair
problem is to output a pair of distinct points p, q ∈ P that have
the smallest distance to each other, or formally:

dist(p, q) = min
p1, p2 ∈ P, p1 6= p2

dist(p, q).

where dist(., .) represents the Euclidean distance of two points.

Let P be a set of points Rd , and r a real value. The objective
of the close pairs problem is to output all pairs of distinct points
p, q ∈ P satisfying:

dist(p, q) ≤ r .

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Example: Closest Pair

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12

The answer is (p6, p8).

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Example: Close Pairs

Assume r = 4
√

2.

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12

The answer is {(p1, p4), (p1, p2), (p2, p3), (p2, p6), (p2, p4), ...}.

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Applications

“Find the closest pair of airplanes at 12pm on 1 Jan 2017.”

“Find the closest pair of earth quake locations in the last 5 years.”

“Find the two customers whose profiles are most similar to each
other.”

...

All the above applications have their counterparts with respect to the
close-pairs problem, e.g., “find all pairs of airplanes that were within
10km at 12pm on 1 Jan 2017”.

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Next, we will first deal with the closest pair problem, and then
attend to the close pairs problem. Note that both problems can
be easily solved in O(n2) time, , where n = |P|. We, on the other
hand, aim to solve the first problem in O(n log n) expected time,
and the second in O(n + k) expected time, where k is the number
of pairs reported.

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Warm Up: Closest Pair in 1D

Think: How to solve the the 1D closest pair problem in O(n log n)
time?

Hint: Sorting suffices.

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Closest Pair in 2D

Let us now turn our attention to 2D space. Naturally, we divide P evenly
using a vertical line `, such that there are n/2 points on each side. Let
P1 (or P2) be the set of points on the left (or right) of `. We recursively
find the closest pair in P1, and then in P2, respectively.

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12
`

In the above example, the closest pair of P1 is (p2, p3), and that of P2 is

(p7, p8).

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Closest Pair in 2D

We need to “merge” the two halves to find the global closest pair. It
suffices to find the closest pair (p1, p2) satisfying p1 ∈ P1 and
p2 ∈ P2—namely, p1, p2 come from different sides. Call it the crossing
closest pair.

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12
`

In the above example, the crossing closest pair is (p6, p8). The global

closest pair must be among the two “local” pairs (p2, p3), (p7, p8), and

the crossing pair (p6, p8).

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Closest Pair in 2D

We now explain how to find the crossing closest pair. Let r1 be the
distance of the closest pair in P1, and r2 be the distance of the closest
pair in P2. Define r = min{r1, r2}.

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12
`

In the above example, r1 =
√

8, r2 = 3, and r = min{r1, r2} =
√

8.

Observation: We care about the crossing closest pair only if its
distance is smaller than or equal to r .

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Closest Pair in 2D

Impose an arbitrary grid G onto the data space, where (i) each cell is an
axis-parallel square with side length r/

√
2, and (ii) ` is a line in the grid.

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12
`

Each point p can be covered by at most 4 cells (e.g., p9 is covered by 4

cells, but p8 by only 1 cell).

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Closest Pair in 2D

For each cell c , we denote by c(P) the set of points in P that are
covered by c .

Observation: For every c , |c(P)| ≤ 2 = O(1)!

Proof: Note that the diagonal of c has length r . If c covers more than 2
points, at least 2 points have distance less than r—contradicting the
definition of r !

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12
`

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Closest Pair in 2D

Group the points by the cells they belong. A cell is non-empty if it covers
at least one point. There can be at most 4n non-empty cells.

1

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12
`

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

In the above example, there are 25 non-empty cells.

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Closest Pair in 2D

Each cell can be uniquely identified by the coordinates of its
centroid—which we refer to as the id of the cell. Using hashing, by
spending O(n) expected time in total, we can create for each cell c , a
linked list containing all the points in c(P) (i.e., the set of points covered
by c).

1

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12
`

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Closest Pair in 2D

Let c1, c2 be two non-empty cells. We say that c1 is an r -neighbor
of c2 (and vice versa) if their mindist is at most r .

To find a crossing closest pair within distance r , it suffices to consider
(the points in) non-empty cells c1, c2 satisfying (i) c1 is on the left of `,
and c2 is on the right, and (ii) c1 and c2 are r -neighbors.

1

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12
`

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

For example, Cell 11 is an r -
neighbor of Cell 5, while Cell 15
is not. In other words, we need to
consider the cell pair (5, 11), but
not (5, 15).

Cells 1, 2, 3, 18, 19, 20, 21, 22,
23, 24, and 25 can be immedi-
ately discarded (why?).

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Closest Pair in 2D

Observation: Each non-empty cell c on the left of ` has at most
10 = O(1) r -neighbor cells on the right of `.

1

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12
`

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

For example, for Cell 8, we need to consider 8 pairs: (8, 10), (8, 11), (8,

12), (8, 13), (8, 14), (8, 15), (8, 16), (8, 17).

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Closest Pair in 2D

The above discussion motivates the following algorithm for finding a
crossing closest pair within distance r :

1. for every non-empty cell c1 on the left of `
2. for every r -neighbor cell c2 of r1 on the right of `
3. calculate the distance of each pair of

points (p1, p2) ∈ c1(P)× c2(P)
4. return the closest one among all the pairs inspected at Line 3, if the

pair has distance at most r .

As mentioned, for each c1, there are O(1) cells c2 that need to be
considered. Since c1(P) and c2(P) each contain at most 2 points, each
execution of Line 3 takes only O(1) time. The overall algorithm takes
O(n) expected time in total.

Think: How to find the cells c2 for each c1 in O(1) expected time? Hint:
by hashing on the cell ids.

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Closest Pair in 2D: Analysis

Let f (n) be the expected running time of our algorithm, it follows that

f (n) ≤ 2 · f (n/2) + O(n)

while f (n) = O(1) for n ≤ 2.

The recurrence solves to f (n) = O(n log n).

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Closest Pair in d-dimensional Space

Our algorithm can be extended directly to d-dimensional space.

The only difference is that, we should impose a d-dimensional grid, where
each cell is a d-dimensional square with side length r/

√
d (this ensures

that a diagonal of every cell has length r).

Recall that, to ensure O(n log n) running time, we relied on the following
fact in 2D:

Each non-empty cell c1 on the left of ` has O(1) r -neighbor cells
c2 on the right of `.

We will prove that this is true regardless of d (as long as d is a constant,
i.e., it has nothing related to n).

Plugging this fact into the earlier analysis immediately shows that the
algorithm runs in O(n log n) expected time for any constant d .

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Closest Pair in d-dimensional Space

Lemma: In d-dimensional space, each non-empty cell c1 on the left of `
has O(1) non-empty cells c2 on the right of ` satisfying
mindist(c1, c2) ≤ r .

Proof: Extend each boundary face of c1 outwards by a length of r . This
gives a d-dimensional square of side length 2r + r/

√
d . The square

intersects with at most⌊
2 +

2r + r/
√
d

r/
√
d

⌋d

≤
⌊

2
√
d + 3

⌋d
= O(1).

cells.

Remark: The calculation in the proof is very loose. For example, many
of the cells in the “enlarged” square are on the left of `, but are counted
anyway. However, the number of cells is still O(1) even after the
over-counting.

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

The success behind our grid decomposition technique in the closest-
pair problem comes from the property that, each cell in the grid
has O(1) r -neighbor cells.

We now proceed to tackle the close-pairs problem by essentially
using the same property. Recall that our objective is to achieve
O(n + k) expected time, where k is the number of pairs reported.

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Recall the definition of the close-pairs problem.

Let P be a set of distinct points Rd , and r a real value. The
objective of the close pairs problem is to output all pairs of distinct
points p, q ∈ P satisfying:

dist(p, q) ≤ r .

We will focus on 2D space, because the algorithm can be directly
extended to arbitrary dimensionalities.

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Close Pairs in 2D

We will explain the algorithm using the same dataset and r = 4
√

2.

1

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12

2

3

4

5

6

7

8

Step 1: Impose an arbitrary grid where each square cell has side length

r/
√

2 = 4. Identify all the non-empty cells (there are 8 such cells in our

example).

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Close Pairs in 2D

Step 2: For each cell c , let c(P) be the set of points covered by c .
Simply report all pairs of distinct points in c(P)—notice that any two
points in the same cell must have distance at most r .

1

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12

2

3

4

5

6

7

8

For example, 1 pair is reported for Cell 1, and 3 pairs for Cell 8.

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Close Pairs in 2D

Step 3: For each cell c1, identify all of its r -neighbor cells c2. For every
c2, inspect all pairs of distinct points (p1, p2) ∈ c1(P)× c2(P), and
report the ones within distance at most r .

1

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12

2

3

4

5

6

7

8

For example, from Cells 2, 4, inspect all the 8 pairs in

{p2, p3} × {p4, p6, p7, p8}, and report (p2, p4), (p2, p6), (p3, p6).

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Close Pairs in 2D: Analysis

Next, we will prove that our algorithm runs in O(n + k) expected time.
At first glance, this may look a bit surprising. Recall that in Step 3, for
each pair of r -neighbor cells (c1, c2), we spend a quadratic amount of
time O(|c1(P)||c2(P)|), but risk finding no answer pairs at all. Indeed,
the core of the analysis is to show that the total time of doing so is
bounded by O(n + k).

We will focus on Steps 2 and 3 because Step 1 obviously takes O(n)

expected time (by hashing).

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Close Pairs in 2D: Analysis (Step 2)

Let c1, c2, ..., cm be the non-empty cells, for some m ≥ 1. Define
ni = |ci (P)|, namely, the number of points covered by ci , for each
i ∈ [1,m]. Clearly

∑m
i=1 ni ≥ n.

The cost of Step 2 is obviously

m∑
i=1

O(n2i)

Notice that

k ≥
m∑
i=1

ni (ni − 1)/2 =
1

2

m∑
i=1

n2i −
1

2

m∑
i=1

ni ≥
1

2

(
m∑
i=1

n2i

)
− n

2
.

We thus have

m∑
i=1

O(n2i) = O(n + k).

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Close Pairs in 2D: Analysis (Step 3)

We will prove that the cost of Step 3 is
∑m

i=1 O(n2i), and therefore,
bounded by O(n + k).

Let ci and cj be a pair of r -neighbor cells. Step 3 spends O(ni · nj) time
to process ci (P)× cj(P). Clearly:

ni · nj ≤ (n2i + n2j)/2.

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

Close Pairs in 2D: Analysis (Step 3)

The total cost of Step 3 can be written as

O

 m∑
i=1

∑
j: cj is an r-neighbor of ci

ni · nj

= O

 m∑
i=1

∑
j: cj is an r-neighbor of ci

(n2i + n2j)

(by the inequality of the previous slide)

As a cell has O(1) r -neighbor cells, we know that each n2i can appear
only O(1) times in the above summation. Therefore, the summation is
bounded by O(

∑m
i=1 n

2
i).

We now conclude that the running time of our close-pairs algorithm is
O(n + k) expected.

COMP5010, CUHK Grid Decomposition — Finding the Closest or Close Pairs

