CSCI 5010: Exercise List 12

Problem 1. Consider the set P of points as shown in the figure. Suppose that we run the closest pair algorithm on P. Recall that the algorithm first divides P in halves along the x-dimension using a vertical line ℓ (see the figure), recursively solves each half, and then builds a grid. Answer the following questions:

1. Draw the grid in the figure.
2. Consider the cell c_{1} of the grid that covers point p_{6}. Recall that the algorithm needs to pair up c_{1} with certain cells c_{2} on the right of ℓ, in order to compute the distance of (p, q) for every pair of points p, q covered by c_{1} and c_{2}, respectively. List the center coordiantes of all such cells c_{2}.

Problem 2. Let P be a set of points in \mathbb{R}^{d}. Give an $O(n \log n)$ expected time algorithm to find the 2nd closest pair of P. Formally, define $T=\{\{p, q\} \mid p, q \in P \wedge p \neq q\}$. The 2nd closest pair is the $\{p, q\} \in T$ that has the second smallest $\operatorname{dist}(p, q)$ (i.e., Euclidean distance between p, q).

For instance, in the example dataset Problem 1, the 2nd closest pair is $\left(p_{6}, p_{9}\right)$ (note that the first closest pair is $\left.\left(p_{1}, p_{3}\right)\right)$.

Problem 3. Let ℓ be a vertical line. Let p be a point on the left of ℓ, and P be a set of points on the right of ℓ. Define r as the distance of the closest pair of P. We throw away from P all the points whose distances to ℓ are greater than r. Define P^{\prime} to be the set of remaining points in P.

For p, we define its r-bounded nearest neighbor (NN) as the point q in P that is closest to p, among all the points whose distances to p are at most r (if no such points exist, then p has no r-nearest neighbor).

For example, in the figure below, the closest pair in $P=\left\{p_{1}, \ldots, p_{10}\right\}$ is $\left(p_{5}, p_{7}\right)$ whose distance is $2 \sqrt{2}$. Thus, $r=2 \sqrt{2}$ and $P^{\prime}=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$. If $p=p_{1}^{*}$, then p has no r-bounded NNs, while if $p=p_{2}^{*}$, the r-bounded NN of p is p_{1}.

Consider the following approach of finding the r-bounded NN of p. First, sort $P^{\prime} \cup\{p\}$ by y -coordinate. Then, identify the position of p in the sorted list. Inspect the 20 points before and after p, respectively (namely, in total 40 points are inspected). Prove that the r-bounded NN (if exists) must be among those 40 points.

Problem 4. Let ℓ be a vertical line. Let P_{1} be a set of points on the left of ℓ, and P_{2} be a set of points on the right of ℓ. Define r_{1} (or r_{2}) as the distance of the closest pair in P_{1} (or P_{2}, resp.), and $r=\min \left\{r_{1}, r_{2}\right\}$. Suppose that P_{1} and P_{2} have been sorted by y-coordinate. Give an $O(n)$ time (where $n=\left|P_{1}\right|+\left|P_{2}\right|$) algorithm to find, for each $p_{1} \in P_{1}$, its r-bounded NN in P_{2}.

Problem 5. Let P be a set of points in \mathbb{R}^{2}. Give an algorithm to find the closest pair of P in $O(n \log n)$ worst case time.

