Let P be a set of n points in \mathbb{R}^2. We want to find a disc D with the smallest radius to cover all the points in P. We refer to D as the minimum enclosing disc (MED) of P and denote it as $med(P)$. The lemma below explains why calling D the MED is appropriate.

Lemma 1. There is only one disc with the smallest radius covering all the points in P.

Proof. Assume, on the contrary, that there are two such discs D_1 and D_2; see the figure below. Then, P must be covered by the shaded area. Let A and B the intersection points of the two discs. Consider the disc D centering at the midpoint o of the segment AB and having a radius equal to the length of segment oA. D covers the shaded area (and hence, also P) but is smaller than D_1 and D_2, giving a contradiction.

Today we will learn a randomized algorithm for solving the problem in $O(n)$ expected time. As we will see, this is another beautiful application of backward analysis.

1 Geometric Facts

Lemma 2. The boundary of $med(P)$ passes at least two points of P.

Proof. Let C be the boundary of $med(P)$. If C passes no points of P, shrink C infinitesimally to obtain a smaller disc still covering P, which contradicts the definition of C.

Suppose that C passes only one point $p \in P$. Let o be the center of C. Consider sliding a point o' from o towards p infinitesimally, and look at the circle C' centered at o' with radius equal to the length of segment $o'p$. C' is smaller than C but still contains P in the interior. This is also a contradiction.

The following geometric fact will be useful:
Lemma 3. Let C_1 and C_2 be two intersecting circles such that the radius of C_2 is larger than or equal to that of C_1. Let α be the area inside both circles. Let p be an arbitrary point that is in C_2 but not in C_1. Then, there exists a circle C that is smaller than C_2, larger than C_1, passes p, and contains the area α.

The figure below gives an illustration of the lemma, where C is the circle in dash line.

Proof. The lemma can be proved using basic geometry. We give only a sketch here (the complete proof is tedious and rudimentary).

Let us first discuss a relevant fact. Fix two distinct points A, B. Consider all the circles passing both A and B. The centers of these circles must be on the perpendicular bisector of segment AB. Every such circle C can be divided into (i) a left arc, which is the part of C on the left of segment AB, and (ii) a right arc, which is the part of C on the right. As the center o of C moves away from the midpoint m of segment AB towards right, the left arc “sweeps” towards segment AB, while the right arc “sweeps” away from the segment; furthermore, C grows continuously. The behavior is symmetric when o moves away from m towards left.

Going back to the context of the lemma, let A and B be the intersection points of C_1 and C_2. Imagine morphing a circle C from C_2 to C_1 while making sure that C passes A and B. Stop as soon as the right arc of C hits p. This is the circle we are looking for.

2 Two Points Are Known

Let us first look at a variant of the MED problem. Let p_1, p_2 be two points in P such that there is at least one disc which has p_1, p_2 on the boundary and covers the entire P. We want to find the smallest such disc, denoted as $med(P, \{p_1, p_2\})$. Algorithm 1 presents our solution in pseudocode. Its running time is clearly $O(n)$. To prove its correctness, it suffices to show:

Lemma 4. Define, for each $i \in [1, n]$, $P_i = \{p_1, ..., p_i\}$. For $i \geq 3$, let $D = med(P_{i-1}, \{p_1, p_2\})$. If p_i is not covered by D, then the boundary of $med(P_i, \{p_1, p_2\})$ must pass p_i.

2
Algorithm 1: Two-Points-Fixed-MED

```plaintext
/* suppose P = \{p_1, p_2, \ldots, p_n\} */
1 D ← the smallest disc covering p_1, p_2
2 for i = 3 to n do
3    if p_i not in D then
4        D ← the disc whose boundary passes p_1, p_2, p_i
5 return C
```

Proof. Let \(D' = med(P, \{p_1, p_2\}) \). Assume on the contrary that the boundary of \(D' \) does not pass \(p_i \). Hence, \(p_i \) falls inside \(D' \); see the figure below. The radius of \(D' \) cannot be smaller than that of \(D \) because the latter was the MED on \(P_{i-1} \) whereas \(D' \) is just one disc covering \(P_{i-1} \). The entire \(P_{i-1} \) must fall in the shaded area. By Lemma 3, there exists a disc smaller than \(D' \) covering \(P_{i-1} \), giving a contradiction.

![Diagram](image)

3 **One Point Is Known**

Next, we will generalize the two-points-fixed problem a bit. Let \(p_1 \) be a point in \(P \) such that there is at least one disc covering \(P \) whose boundary passes \(p_1 \). We want to find the smallest such circle, denoted as \(med(P, \{p_1\}) \).

Algorithm 2: One-Point-Fixed-MED

```plaintext
/* suppose P = \{p_1, p_2, \ldots, p_n\} */
1 randomly permute \( p_2, \ldots, p_n \)
2 D ← the smallest disc covering p_1, p_2
3 for i = 3 to n do
4    if p_i not in D then
5        D ← Two-Points-Fixed-MED(\{p_1, \ldots, p_i\}, \{p_1, p_i\})
6 return D
```

The algorithm’s correctness is ensured by:

Lemma 5. For \(i \geq 3 \), let \(D = med(P_{i-1}, \{p_1\}) \). If \(p_i \) is not covered by \(D \), then the boundary of \(med(P_i, \{p_1\}) \) must pass \(p_i \).

Proof. Left as an exercise.
Let us analyze the running time of the algorithm. Let \(t_i \) be the expected running time of the for-loop (Lines 3-5) for a specific \(i \). Thus, the total expected running time is \(O(\sum_{i=3}^{n} E[t_i]) \). Now, focus on \(t_i \) for a specific \(i \). Set \(D = med(P_i, \{p_1\}) \). We know that, besides \(p_1 \), the boundary of \(D \) is determined by at most 2 other points in \(P \) — let them be \(\pi_1, \pi_2 \) (if the boundary passes more than 2 points of \(P \) other than \(p_1 \), set \(\pi_1, \pi_2 \) to 2 arbitrary points of them). Hence, if \(p_i \neq \pi_1 \) and \(p_i \neq \pi_2 \), then \(t_i = O(1) \); otherwise, \(t_i = O(i) \) (Lemma 4). Standard backward analysis shows that \(E[t_i] \leq 2^{i-1}O(i) + O(1) = O(1) \). Therefore, the expected running time of Algorithm 2 is \(O(n) \), which subsumes the time of random permutation at Line 1.

4 No Point Is Known

We are ready to tackle the MED problem in its most general form:

```
Algorithm 3: MED(P)
/* suppose \( P = \{p_1, p_2, \ldots, p_n\} \) */
1 randomly permute \( p_1, \ldots, p_n \)
2 \( D \leftarrow \) the smallest disc covering \( p_1, p_2 \)
3 for \( i = 3 \) to \( n \) do
4     if \( p_i \) not in \( D \) then
5         \( D \leftarrow \) One-Point-Fixed-MED(\( \{p_1, \ldots, p_i\} \), \( \{p_i\} \))
6 return \( C \)
```

Lemma 6. For \(i \geq 3 \), let \(D = med(P_{i-1}) \). If \(p_i \) is not covered by \(D \), then the boundary of \(med(P_i) \) passes \(p_i \).

Proof. Left as an exercise.

We can once again apply backward analysis to prove that Algorithm 3 runs in \(O(n) \) expected time. The details are left as an exercise.