Grid Decomposition

Yufei Tao

CSE Dept
Chinese University of Hong Kong
This lecture will introduce **grid decomposition**, which is a fundamental technique for solving many computational geometry problems. We will demonstrate the technique by using it to solve the closest pair and close pairs problems.
Let P be a set of points \mathbb{R}^d. The objective of the **closest pair problem** is to output a pair of distinct points $p, q \in P$ that have the smallest distance to each other, or formally:

$$dist(p, q) = \min_{p', q' \in P, p' \neq q'} \dist(p', q').$$

where $\dist(., .)$ represents the Euclidean distance of two points.

Let P be a set of points \mathbb{R}^d and r a real value. The objective of the **close pairs problem** is to output all pairs of distinct points $p, q \in P$ satisfying:

$$\dist(p, q) \leq r.$$
The answer is \((p_6, p_8)\).
Example: Close Pairs

Assume \(r = 4\sqrt{2} \).

The answer is \(\{(p_1, p_4), (p_1, p_2), (p_2, p_3), (p_2, p_6), (p_2, p_4), \ldots \} \).
Both problems can be easily solved in $O(n^2)$ time where $n = |P|$. We will settle the closest pair problem in $O(n \log n)$ expected time and the close pair problem in $O(n + k)$ expected time, where k is the number of pairs reported.
Closest Pair in 2D

We will focus on 2D.

Divide P evenly using a vertical line ℓ. Let P_1 (or P_2) be the set of points on the left (or right) of ℓ. Recursively find the closest pairs in P_1 and P_2, respectively.

The closest pair of P_1 is (p_2, p_3) and that of P_2 is (p_7, p_8).
Closest Pair in 2D

It remains to find the closest pair \((p_1, p_2)\) satisfying \(p_1 \in P_1\) and \(p_2 \in P_2\) (i.e., \(p_1, p_2\) come from different sides). Call it the **crossing** closest pair.

The crossing closest pair is \((p_6, p_8)\). The global closest pair must be among the two “local” pairs \((p_2, p_3)\), \((p_7, p_8)\), and the crossing pair \((p_6, p_8)\).
We now explain how to find the crossing closest pair. Let r_1 be the distance of the closest pair in P_1 and r_2 be the distance of the closest pair in P_2. Define $r = \min\{r_1, r_2\}$.

In the above example, $r_1 = \sqrt{8}$, $r_2 = 3$, and $r = \min\{r_1, r_2\} = \sqrt{8}$.

Observation: We care about the crossing closest pair only if its distance is smaller than r.
Closest Pair in 2D

Impose a grid G where (i) each cell is an axis-parallel square with side length $r/\sqrt{2}$, and (ii) ℓ is a line in the grid.

Each point p can be covered by at most 4 cells.
Closest Pair in 2D

For each cell c, denote by $c(P)$ the set of points in P covered by c.

Observation: For every c, $|c(P)| \leq 2 = O(1)$!

Proof: The diagonal of c has length r. Convince yourself that c covering more than 2 points would contradict the definition of r.

Grid Decomposition
Closest Pair in 2D

Group the points by the cells they belong. A cell is non-empty if it covers at least one point. There can be at most $4n$ non-empty cells.

In the above example, there are 25 non-empty cells.
Closest Pair in 2D

Each cell can be uniquely identified by its centroid’s coordinates, which we refer to as the cell’s id. For each cell c, we create a linked list containing all the points in c(P) (i.e., the set of points covered by c). This can be done using hashing in $O(n)$ expected time.
Let c_1, c_2 be two non-empty cells. We say that c_1 is an r-neighbor of c_2 (and vice versa) if their mindist is at most r.

To find a crossing closest pair within distance r, it suffices to consider non-empty cells c_1, c_2 satisfying (i) c_1 is on the left of ℓ, and c_2 is on the right, and (ii) c_1 and c_2 are r-neighbors.

For example, we need to consider the cell pair $(5, 11)$, but not $(5, 15)$.

![Grid Decomposition Diagram](image-url)
Observation: Each non-empty cell c on the left of ℓ has $O(1)$ r-neighbor cells on the right of ℓ.

For example, for Cell 8, we need to consider 8 pairs: (8, 10), (8, 11), (8, 12), (8, 13), (8, 14), (8, 15), (8, 16), (8, 17).
Closest Pair in 2D

The above discussion motivates the following algorithm for finding a crossing closest pair within distance r:

1. **for** every non-empty cell c_1 on the left of ℓ
2. **for** every r-neighbor cell c_2 of c_1 on the right of ℓ
3. calculate the distance of each pair of points $(p_1, p_2) \in c_1(P) \times c_2(P)$
4. **return** the closest one among all the pairs inspected at Line 3, if the pair has distance at most r.

As mentioned, for each c_1, there are $O(1)$ cells c_2 to consider. Since $c_1(P)$ and $c_2(P)$ each contain at most 2 points, each execution of Line 3 takes only $O(1)$ time. The overall algorithm takes $O(n)$ expected time in total.

Think: How to find the cells c_2 for each c_1 in $O(1)$ expected time?
Closest Pair in 2D: Analysis

Let $f(n)$ be the expected running time of our algorithm, it follows that

$$f(n) \leq 2 \cdot f(n/2) + O(n)$$

while $f(n) = O(1)$ for $n \leq 2$.

The recurrence solves to $f(n) = O(n \log n)$.
In the closest-pair problem, we utilized the property that each cell in the grid has $O(1)$ r-neighbor cells.

We now proceed to tackle the close-pairs problem by using the same property. Recall that our objective is to achieve $O(n + k)$ expected time, where k is the number of pairs reported.
Recall the definition of the close-pairs problem.

Let P be a set of distinct points \mathbb{R}^d and r a real value. The objective is to output all pairs of distinct points $p, q \in P$ satisfying:

$$\text{dist}(p, q) \leq r.$$

We will again focus on 2D space.
We will explain the algorithm using the same dataset and $r = 4\sqrt{2}$.

Step 1: Impose an arbitrary grid where each square cell has side length $r/\sqrt{2} = 4$. Identify all the non-empty cells.
Close Pairs in 2D

Step 2: For each cell \(c \), let \(c(P) \) be the set of points covered by \(c \). Simply report all pairs of distinct points in \(c(P) \) — notice that any two points in the same cell must have distance at most \(r \).

For example, 1 pair is reported for Cell 1, and 3 pairs for Cell 8.

![Grid Decomposition Diagram](image-url)
Step 3: For each cell c_1, identify all of its r-neighbor cells c_2. For every c_2, inspect all pairs of distinct points $(p_1, p_2) \in c_1(P) \times c_2(P)$, and report the ones within distance at most r.

For example, from Cells 2 and 4, inspect all the 8 pairs in \(\{p_2, p_3\} \times \{p_4, p_6, p_7, p_8\} \), and report \((p_2, p_4), (p_2, p_6), (p_3, p_6)\).
Close Pairs in 2D: Analysis

Next, we will prove that our algorithm runs in $O(n + k)$ expected time. At first glance, this may look surprising. Recall that in Step 3, for each pair of r-neighbor cells (c_1, c_2), we spend a quadratic amount of time $O(|c_1(P)||c_2(P)|)$, but risk finding no answer pairs at all. Indeed, the core of the analysis is to show that the total time of doing so is bounded by $O(n + k)$.

We will focus on Steps 2 and 3 because Step 1 obviously takes $O(n)$ expected time (hashing).
Let \(c_1, c_2, ..., c_m \) be the non-empty cells, for some \(m \geq 1 \). Define \(n_i = |c_i(P)| \), namely, the number of points covered by \(c_i \), for each \(i \in [1, m] \). Clearly \(\sum_{i=1}^{m} n_i \geq n \).

The cost of Step 2 is

\[
\sum_{i=1}^{m} O(n_i^2)
\]

Notice that

\[
k \geq \sum_{i=1}^{m} n_i(n_i - 1)/2 = \left(\frac{1}{2} \sum_{i=1}^{m} n_i^2 \right) - \left(\frac{1}{2} \sum_{i=1}^{m} n_i \right).
\]

We thus have

\[
\sum_{i=1}^{m} O(n_i^2) = O(n + k).
\]
Close Pairs in 2D: Analysis (Step 3)

We will prove that the cost of Step 3 is $\sum_{i=1}^{m} O(n_i^2)$, and therefore, bounded by $O(n + k)$.

Let c_i and c_j be a pair of r-neighbor cells. Step 3 spends $O(n_i \cdot n_j)$ time to process $c_i(P) \times c_j(P)$. Clearly:

$$n_i \cdot n_j \leq (n_i^2 + n_j^2)/2.$$
Close Pairs in 2D: Analysis (Step 3)

The total cost of Step 3 can be written as

\[
O \left(\sum_{i=1}^{m} \sum_{j: c_j \text{ is an } r\text{-neighbor of } c_i} (n_i^2 + n_j^2) \right)
\]

which is bounded by \(O(\sum_{i=1}^{m} n_i^2)\) because a cell has \(O(1)\) \(r\)-neighbors.

We now conclude that the running time of our close-pairs algorithm is \(O(n + k)\) expected.