Exercises

Problem 1. Consider the Voronoi diagram of a set P of points in \mathbb{R}^2. Prove: if a Voronoi vertex is incident to 4 Voronoi edges, then P has 4 points lying on the same circle.

Problem 2. P is a set of points in \mathbb{R}^2. Prove: if we take a point p from P uniformly at random, the number of Voronoi neighbors of p is $O(1)$ in expectation.

Problem 3. Let P be a set of points in \mathbb{R}^2. Consider any point q in \mathbb{R}^2 (which may not be in P). Let p_1 be the nearest neighbor of q and p_2 be the second nearest neighbor (i.e., p_2 has the second smallest distance to q among all the points in P). Prove: p_2 must be a Voronoi neighbor of p_1.

(Hint: Argue there is a circle passing p_1, p_2 and containing no points of P in the interior.)

Problem 4. Prove: every triangulation of P contains $2n - 2 - k$ triangles where $n = |P|$ and k is the number of points on the convex hull boundary of P.

Problem 5. Let ABC and DEF be two triangles. No triangle contains any vertex of the other. We know that segment AB intersects with segment DE in the interior. Prove: a segment in $\{AC, BC\}$ must intersect a segment in $\{DF, EF\}$.

Remark: This completes our proof of the non-crossing lemma.