Exercise List 4

Problem 1 (Polygon Intersection). Let P_{1} and P_{2} be two convex polygons. The vertices of each polygon are given to you in clockwise order in an array. Let n be the total number of vertices of P_{1} and P_{2}. Suppose that each edge of P_{1} shares at most one common point with an edge of P_{2}. Describe an algorithm to compute the intersection points of the edges of P_{1} and P_{2} in $O(n)$ time.

Problem 2 (Polygon Intersection, Again). Consider the setup in Problem 1 again. The intersection of P_{1} and P_{2} is a convex polygon, which we denote as P. Describe an algorithm to output the vertices of P in clockwise order. Your algorithm must use $O(n)$ time.
Problem 3 (Point in Polygon) Let P be a convex polygon of n vertices, which are given to you in clockwise order in an array. Given an arbitrary point q, describe an algorithm to decide whether q is inside or outside P in $O(\log n)$ time.

Problem 4 (Convexity Detection). Let P be a polygon of n vertices, which are given to you in clockwise order in an array. P is not necessarily convex. Describe an algorithm to decide whether P is convex in $O(n)$ time.

