## Exercise List 3

Problem 1 (Range Max). Let $S$ be a set of $n$ real numbers. Each number $v \in S$ is associated with a real valued weight. Given a range $[x, y]$, a query returns an element in $S \cap[x, y]$ with the maximum weight. For example, if $S=\{(1,15),(3,7),(7,12),(10,9)\}$, where each pair has the form $(v$, weight $(v))$. Then, a query with range $[2,15]$ returns $(7,12)$. Design a data structure to answer such queries in $O(\log n)$ time. Your structure should also support insertions and deletions in $O(\log n)$ time.
Problem 2 (Batched Line Dragging). Let $S$ be a set of $n$ vertical line segments in $\mathbb{R}^{2}$ (i.e., each segment has the form $\left.x \times\left[y_{1}, y_{2}\right]\right)$. Also, let $P$ be a set of $m$ points in $\mathbb{R}^{2}$. For each segment $s \in S$, we want to output a pair $(s, p)$ where $p$ is the first point in $P$ that is hit by $s$ if $s$ moves left; if $p$ does not exist, output ( $s, n i l)$. Describe an algorithm to do so in $O(n \log n+m \log m)$ time. For example, in the following figure, you should output $\left\{\left(s_{1}, p_{1}\right),\left(s_{2}, p_{1}\right),\left(s_{3}, n i l\right),\left(s_{4}, p_{2}\right)\right\}$. You may assume that $P$ is in general position (i.e., no two points have the same x-coordinate or y-coordinate).


Problem 3 (Rotating Sweep; Exercise 2.14 from textbook). Let $S$ be a set of $n$ disjoint line segments in the plane, and let $p$ be a point not on any of the line segments in $S$. We want to determine all line segments of $S$ that $p$ can see, that is, all line segments of $S$ that contain some point $q$ so the segment $p q$ does not intersect any segment in $S$ (except at $q$, of course). Give an $O(n \log n)$ time algorithm to solve the problem. For example, in the following figure, you should output all segments but $s_{4}$ and $s_{6}$.


