Exercise List 2

Problem 1 (General Binary Search). Let A be an array of n real values. A has the property that if we start from some position and then look at these values in a cyclic manner, we see a pattern where the values initially increase monotonically and then decrease monotonically. For example, A can be $(10,20,30,25,15,0,5)$; namely, if we inspect the values in this order: $0,5,10$, $20,30,25,15$, then we observe the pattern mentioned earlier. On the other hand, A does not have the property if its values are $(5,20,30,25,15,0,10)$. Design an algorithm to find the maximum value in A in $O(\log n)$ time (note that you do not know where is the "starting position" mentioned earlier).

Problem 2 (Gift Wrap). Let P be a convex polygon of n vertices which have been stored in an array in the counterclockwise order. Let ℓ be a line in the plane such that the entire P falls on the left side of ℓ. Now, fix a point p on ℓ. We want to turn ℓ counterclockwise with p as the pivot, and stop as soon as ℓ hits the first vertex of P (e.g., in the figure below, the answer is p^{\prime}). Design an algorithm to find in $O(\log n)$ time the first vertex hit.

Problem 3 (Gift Wrap Again). Let P_{1}, \ldots, P_{m} be m arbitrary convex polygons, each of which has no more than k points. The vertices of each polygon have been stored in an array in the counterclockwise order. Let ℓ be a line in the plane such that all the P_{1}, \ldots, P_{m} fall on the left side of ℓ. Now, fix a point p on ℓ. We want to turn ℓ counterclockwise with p as the pivot, and stop as soon as ℓ hits the first vertex of any polygon (e.g., in the figure below, the answer is p^{\prime}). Design an algorithm to find in $O(m \log k)$ time the first vertex hit.

Problem 4 (Output-Sensitive Convex Hull). Let S be a set of n points in \mathbb{R}^{2}. You are given an integer \hat{k} that is guaranteed to be larger than or equal to the number of vertices on the convex
hull of S. Give an algorithm that computes the convex hull in $O(n \log \hat{k})$ time. (Hint: arbitrarily divide S into groups of size \hat{k}.)

