## Exercise List 12

Problem 1. Describe an algorithm to build a kd-tree on $n$ points in $\mathbb{R}^{2}$ in $O(n \log n)$ time.
Problem 2. (Range Searching on Rectangles). Let $S$ be a set of $n$ axis-parallel rectangles in $\mathbb{R}^{2}$. Given an axis-parallel rectangle $q$, a query reports all the rectangles $r \in S$ such that $r \cap q \neq \emptyset$. Describe a data structure of $O(n)$ size that answers such a query in $O\left(n^{3 / 4}+k\right)$ time, where $k$ is the number of rectangles reported.

Problem 3. Same problem as above, but give a structure with space consumption $O\left(n \log ^{3} n\right)$ and query time $O\left(\log ^{4} n+k\right)$.

Problem 4 (Constrained Top-1 Search). Let $S$ be a set of $n$ points in $\mathbb{R}^{2}$. A constrained top-1 search query specifies:

- real numbers $c_{1}, c_{2}$, and
- an axis-parallel rectangle $q$.

It returns a point $(x, y) \in S \cap q$ that maximizes the function $c_{1} x+c_{2} y$. Describe a data structure of $O\left(n \log ^{2} n\right)$ space that is able to answer any such query in $O\left(\log ^{3} n\right)$ time.

