Exercise List 1

Problem 1 (Top-1 Search). Let P be a set of n points in \mathbb{R}^{2}. Let x_{p}, y_{p} denote the x - and y-coordinates of p, respectively. A linear preference function $f(p)$ has the form $f(p)=c_{1} x_{p}+c_{2} y_{p}$, where p is a point \mathbb{R}^{2}, and c_{1}, c_{2} are constants. The value $f(p)$ is called the score of p. A top- 1 query specifies a pair of $\left(c_{1}, c_{2}\right)$, and returns a point of P with the maximum score (if multiple points have the same maximum score, return one of them arbitrarily). Design a structure of $O(n)$ space that answers a query in $O(\log n)$ time. Also describe how to construct the structure in $O(n \log n)$ time.

Problem 2 (Merging Convex Hulls). Let P_{1} and P_{2} be two sets of points such that any point of P_{1} has a smaller x-coordinate than all the points in P_{2}. You are also given the convex hulls of P_{1} and P_{2}, denoted as $C H\left(P_{1}\right)$ and $C H\left(P_{2}\right)$, respectively. The vertices on each convex hull are sorted clockwise. Describe an algorithm to compute $C H\left(P_{1} \cup P_{2}\right)$ in $O(n)$ time, where $n=\left|P_{1}\right|+\left|P_{2}\right|$.
Problem 3 (Merging Convex Hulls (Again)). Same as Problem 2, but without the assumption that any point of P_{1} has a smaller x-coordinate than all the points in P_{2}. Namely, P_{1} and P_{2} are now two arbitrary sets of points.

