Fudan Summer Course: Assignment 1 (Due Day: 11:59pm, 7 Aug)

Problem 1. Consider the following two problems:

- Batched range counting: Let R be a set of axis-parallel rectangles in \mathbb{R}^{2}, and P be a set of points in \mathbb{R}^{2}. We want to report, for every rectangle $r \in R$, the number $|r \cap P|$, namely, the number of points in P that are covered by r. Define $n=|R|+|P|$.
- 2-sided range counting: Define a 2-sided rectangle as a rectangle of the form $(-\infty, x] \times(-\infty, y]$, namely, the left and bottom edges of the rectangle are "grounded" on the boundary of the data space. Let R be a set of 2 -sided rectangles in \mathbb{R}^{2}, and P be a set of points in \mathbb{R}^{2}. We want to report, for each rectangle $r \in R$. Define $n=|R|+|P|$.

Prove: If the second problem can be solved in $f(n)$ time, then the first problem can be solved in $O(n)+O(f(n))$ time.

Problem 2. Describe an algorithm to solve the 2 -sided problem in $O(n \log n)$ time.

