Suppose that $G = (V, E)$ is a simple directed graph where each edge $(u, v) \in E$ has a weight $w(u, v)$, which can be negative. It is known that G is strongly connected and contains at least one negative cycle. In the tutorial, we learned the following algorithm for finding a negative cycle:

algorithm negative-cycle-detection
input: strongly connected $G = (V, E)$ and weight function w

1. $s \leftarrow$ arbitrary vertex in V
2. $\text{dist}(s) \leftarrow 0$ and $\text{dist}(v) \leftarrow \infty$ for every vertex $v \in V \setminus \{s\}$
3. $\text{parent}(v) \leftarrow \text{nil}$ for all $v \in V$
4. for $i \leftarrow 1$ to $|V| - 1$ do
5. for each edge $(u, v) \in E$ do
6. if $\text{dist}(v) > \text{dist}(u) + w(u, v)$ then
7. $\text{dist}(v) \leftarrow \text{dist}(u) + w(u, v)$; $\text{parent}(v) \leftarrow u$
8. for each edge $(u, v) \in E$ do
9. if $\text{dist}(v) > \text{dist}(u) + w(u, v)$ then
10. $\text{parent}(v) \leftarrow u$
 /* start tracing back the parent pointers until seeing a vertex twice */
11. initialize a vertex sequence S that contains only v
12. while $\text{parent}(v) \notin S$ do
13. append $\text{parent}(v)$ to S; $v \leftarrow \text{parent}(v)$
14. report a negative cycle: output the appendix of S starting from v and add v in the end

Next, we prove that the algorithm is correct.

Lemma 1. During the algorithm, if u is a vertex in V with $\text{parent}(u) \neq \text{nil}$, then $\text{dist}(\text{parent}(u)) + w(\text{parent}(u), u) \leq \text{dist}(u)$.

Proof. Let $z = \text{parent}(u)$. When z just becomes $\text{parent}(u)$, $\text{dist}(z) + w(z, u) = \text{dist}(u)$. After that, $\text{dist}(z)$ can only decrease, while $\text{dist}(u)$ stays the same until $\text{parent}(u)$ is updated. \Box

Lemma 2. Suppose that there is a sequence of $x \geq 2$ vertices u_1, u_2, \ldots, u_x such that $\text{parent}(u_i) = u_{i+1}$ for every $i \in [1, x - 1]$ and $\text{parent}(u_x) = u_1$. Then, $(u_1, u_x), (u_2, u_1), (u_3, u_2), \ldots, (u_x, u_{x-1})$ form a negative cycle.

Proof. Each of $\text{parent}(u_1), \text{parent}(u_2), \ldots, \text{parent}(u_x)$ was set by an edge relaxation. W.l.o.g., suppose that the edge relaxation for $\text{parent}(u_1)$ happened the latest. Consider the moment right before the relaxation. At this moment, we must have

$$\text{dist}(u_2) + w(u_2, u_1) < \text{dist}(u_1)$$

By Lemma 1, we have

$$\text{dist}(u_3) + w(u_3, u_2) \leq \text{dist}(u_2)$$
$$\text{dist}(u_4) + w(u_4, u_3) \leq \text{dist}(u_3)$$
$$\ldots$$
Let \(d \) gives a contradiction, indicating that our initial assumption (that the lemma is wrong) cannot be.

The above inequalities imply \(w(u_x, u_1) + \sum_{i=1}^{\ell} w(u_i, u_{i+1}) < 0 \).

Lemma 3. Consider the moment when the algorithm has come to Line 11. At this moment, if we continuously trace the parent pointers starting from \(v \), we encounter an infinite loop.

Proof. Suppose that this is not true. Then, the tracing must stop at \(s \) because every node — except possibly \(s \) — has a parent. This yields a simple path \(\pi \) from \(s \) to \(v \). Denote by \(\ell \) the number of edges on \(\pi \); clearly, \(\ell \leq |V| - 1 \). Denote the vertices on \(\pi \) as \(z_0, z_1, \ldots, z_{\ell} \), where \(z_0 = s \) and \(z_{\ell} = v \).

Let \(d_i \) be the value of \(\text{dist}(z_i) \) at this moment, for each \(i \in [0, \ell] \). Let us make several observations:

- \(\text{parent}(z_i) = z_{i-1} \) for all \(i \in [1, \ell] \), but \(\text{parent}(z_0) = \text{nil} \).
- The fact \(\text{parent}(s) = \text{nil} \) implies \(d_0 = 0 \). To see why, recall that \(\text{dist}(s) \) is set to 0 at the beginning of the algorithm. Thus, if \(d_0 \neq 0 \), then \(\text{dist}(s) \) must have been decreased during the algorithm’s execution, in which case \(\text{parent}(s) \) cannot be \(\text{nil} \).
- For each \(i \in [1, \ell] \), \(d_i \geq d_{i-1} + w(z_{i-1}, z_i) \). At the moment when \(\text{dist}(z_i) \) was reduced to \(d_i \) (which must be due to the relaxation of \((z_{i-1}, z_i) \)), it held that \(d_i = \text{dist}(z_i) = \text{dist}(z_{i-1}) + w(z_{i-1}, z_i) \). The value of \(\text{dist}(z_{i-1}) \) could then only decrease after that, which implies \(d_i \geq d_{i-1} + w(z_{i-1}, z_i) \).

Claim: For each \(i \in [1, \ell] \), we have

- \(d_i = \sum_{i=1}^{\ell} w(z_{i-1}, z_i) \), and
- the value of \(\text{dist}(z_i) \) was exactly \(d_i \) at the end of the \(i \)-th round (and hence has remained so till the end of the algorithm).

We will prove the claim by induction. For the base case, the claim becomes \(\text{dist}(z_1) = d_1 = w(s, z_1) \) at the end of the first round. Right after the edge \((s, z_1)\) was relaxed in the first round, it held that \(\text{dist}(z_1) = w(s, z_1) \). In the rest of the algorithm, \(\text{dist}(z_1) \) could only decrease, indicating that \(d_1 \leq w(s, z_1) \). On the other hand, as observed earlier, we have \(d_1 \geq w(s, z_1) \). Therefore, it must hold that \(d_1 = w(s, z_1) \), and the value of \(\text{dist}(z_1) \) was \(w(s, z_1) \) at the end of the first round.

Assuming the claim’s correctness for \(i \leq k \), next we will prove the claim for \(i = k + 1 \). By the inductive assumption, \(\text{dist}(z_k) = d_k = \sum_{i=1}^{k} w(z_{i-1}, z_i) \) at the end of the \(k \)-th round. Right after the edge \((z_k, z_{k+1})\) was relaxed in the \((k+1)\)-th round, it held that \(\text{dist}(z_{k+1}) = \text{dist}(z_{k}) + w(z_k, z_{k+1}) = d_{k} + w(z_k, z_{k+1}) \). In the rest of the algorithm, \(\text{dist}(z_{k+1}) \) could only decrease, indicating that \(d_{k+1} \leq d_k + w(z_k, z_{k+1}) \). On the other hand, as observed earlier, we have \(d_{k+1} \geq d_k + w(z_k, z_{k+1}) \). Therefore, it must hold that \(d_{k+1} = d_k + w(z_k, z_{k+1}) = \sum_{i=1}^{k+1} w(z_{i-1}, z_i) \), and the value of \(\text{dist}(z_{k+1}) \) was \(d_{k+1} \) at the end of the \((k + 1)\)-th round. This completes the proof of the claim.

However, according to the claim, the edge relaxation at Line 9 should not have happened. This gives a contradiction, indicating that our initial assumption (that the lemma is wrong) cannot be true.

The algorithm’s correctness follows from Lemmas 2 and 3.