CSCI3610: Special Exercise Set 3

Problem 1. If we run the activity-selection algorithm taught in the class on the following input:
\[S = \{ [1, 10], [2, 22], [3, 23], [20, 30], [25, 45], [40, 50], [47, 62], [48, 63], [60, 70] \} \]
what is the set of intervals returned?

Problem 2. The following is another greedy algorithm for the activity selection problem. Initialize an empty \(T \), and then repeat the following steps until \(S \) is empty:

- (Step 1) Add to \(T \) the interval \(I \) with the shortest length.
- (Step 2) Remove from \(S \) the interval \(I \), and all the intervals overlapping with \(I \).

Finally, return \(T \) as the answer.

Prove: the above algorithm does not always return an optimal solution.

Problem 3 (Fractional Knapsack). Let \((w_1, v_1), (w_2, v_2), \ldots, (w_n, v_n)\) be \(n \) pairs of positive real values. Given a real value \(W \leq \sum_{i=1}^{n} w_i \), we want to find \(x_1, x_2, \ldots, x_n \) to maximize the objective function

\[
\sum_{i=1}^{n} \frac{x_i}{w_i} v_i
\]

subject to

- \(0 \leq x_i \leq w_i \) for every \(i \in [1, n] \);
- \(\sum_{i=1}^{n} x_i \leq W \).

W.l.o.g., assume that \(v_1 \geq v_2 \geq \ldots \geq v_n \). Consider the algorithm that works as follows.

1. \textbf{for} \(i \leftarrow 1 \) \textbf{to} \(n \) \textbf{do}
2. \hspace{1em} \(x_i \leftarrow \min\{W, w_i\} \)
3. \hspace{1em} \(W \leftarrow W - x_i \)

Prove: the above algorithm does not always return an optimal solution.

Problem 4 (0-1 Knapsack). Suppose that there are \(n \) gold bricks, where the \(i \)-th piece weighs \(p_i \) bounds and is worth \(d_i \) dollars. Given a positive integer \(W \), our goal is to find a set \(S \) of gold bricks such that

- the total weight of the bricks in \(S \) is at most \(W \), and
- the total value of the bricks in \(S \) is maximized (among all the sets \(S \) satisfying the first condition).

Assuming \(d_1 \geq d_2 \geq \ldots \geq d_n \), let us consider the following greedy algorithm:

1. \(S = \emptyset \)
2. \textbf{for} \(i = 1 \) \textbf{to} \(n \)
3. \hspace{1em} \textbf{if} \(p_i \leq W \) \textbf{then}
4. \hspace{2em} add \(p_i \) to \(S \); \(W \leftarrow W - p_i \)

Prove: the above algorithm does not guarantee finding the desired set \(S \).