CSCI3160: Midterm
Name: Student ID

Note 1: Write all your solutions in the answer book.
Note 2: You do not need to analyze algorithms that have been discussed in lectures, tutorials, and regular exercises.

Part I (Special Exercises)

Problem 1 (10%). Let \(S \) be a set of \(n \) distinct integers, and \(k_1, k_2 \) be arbitrary integers satisfying \(1 \leq k_1 \leq k_2 \leq n \). Suppose that \(S \) is given in an array. Give an \(O(n) \) expected time algorithm to report all the integers whose ranks in \(S \) are in the range \([k_1, k_2]\) (recall that the rank of an integer \(v \) in \(S \) equals the number of integers in \(S \) that are at most \(v \)). You need to analyze the running time of your algorithm.

Problem 2 (10%). Consider the following greedy algorithm for the activity selection problem (definition: given a set \(I \) of intervals, find a maximum subset \(T \subseteq I \) such that all the intervals in \(T \) are mutually disjoint). Initialize an empty \(T \), and then repeat the following steps until \(I \) is empty:

- (Step 1) Add to \(T \) the interval \(I \in I \) with the shortest length.
- (Step 2) Remove from \(I \) the interval \(I \) and all the intervals overlapping with \(I \).

Finally, return \(T \) as the answer.

Prove: the above algorithm does not always return an optimal solution.

Problem 3 (10%). Let \(G = (V, E) \) be an undirected connected graph where each edge in \(E \) is associated with a positive weight. Consider any non-empty subset \(S \subset V \). An edge \(\{u, v\} \) in \(E \) is an \(S \)-cross edge if \(u \in S \) but \(v \notin S \). Prove: if \(e \) is an \(S \)-cross edge that has the minimum weight among all \(S \)-cross edges, \(e \) must belong to some MST of \(G \).

Part II (Algorithm Execution)

Problem 4 (10%). Consider the weighted undirected graph below (the number beside each edge indicates the edge’s weight).

![Graph Image]

Suppose that we run Prim’s algorithm to find a minimum spanning tree (MST) of this graph. Write down the edges of the MST in the order picked by the algorithm.
Problem 5 (10%). Consider an alphabet Σ that contains letters a, b, c, and d, whose frequencies are 40%, 10%, 20%, 30%, respectively. Show the code tree obtained by running Huffman’s algorithm on this input.

Problem 6 (10%). For the rod cutting problem, consider the price table below:

<table>
<thead>
<tr>
<th>length</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>price</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>17</td>
<td>17</td>
<td>20</td>
</tr>
</tbody>
</table>

For each ℓ ∈ [1, 8], define opt(ℓ) as the maximum revenue attainable from a rod of length ℓ. Give the value of opt(ℓ) for each ℓ ∈ [1, 8].

Problem 7 (10%). Define two strings s = AGXT and t = GXTG. For each i ∈ [0, 4], define s[1 : i] as the prefix of s with length i; similarly, for each j ∈ [0, 4], define t[1 : j] as the prefix of t with length j. For any i ∈ [0, 4] and j ∈ [0, 4], define len(i, j) as the length of the longest common subsequence of s[1 : i] and t[1 : j]. Give the value of len(i, j) for each i ∈ [0, 4] and j ∈ [0, 4].

Part III (Algorithm Design and Analysis)

Problem 8 (15%). Let I be a set of n intervals of the form [x, y], where x and y are integers. The union of all the intervals in I equals [0, U] (i.e., every value in [0, U] is covered by at least one interval in I). We call a subset S ⊆ I a solution if the union of the intervals in S equals [0, U]. A solution is optimal if it has the smallest size among all solutions.

For example, suppose that I = {[10, 15], [0, 35], [20, 50], [55, 60], [5, 30], [0, 25], [40, 60], [45, 50], [25, 45]} and U = 60. An optimal solution has size 3, e.g., {[0, 35], [20, 50], [40, 60]}. Another optimal solution is {[0, 25], [25, 45], [40, 60]}.

Prove that the following algorithm always returns an optimal solution.

1. Set a = 0 and S = ∅
2. Let I = [x, y] be the interval in I maximizing the length of [x, y] ∩ [a, U] among all the intervals covering value a (e.g., if a = 15, U = 60, and I = [0, 35], then [x, y] ∩ [a, U] = [15, 35], which has length 20)
3. Add I to S, and set a = y + 1
4. If a > U then return S; otherwise, repeat from Step 2

Problem 9 (15%). Let A be an array of n positive integers. You need to find the maximum possible sum that can be achieved by selecting a subset of the elements in A. However, there is a constraint: you cannot include two consecutive elements of the array into the subset. In other words, if you choose an element at index i, you cannot choose the element at index i + 1. For example, if A = (4, 1, 3, 9, 5), the maximum sum is 13, which can be achieved by selecting 4 and 9.

Design an algorithm to solve the problem in O(n) time. You need to analyze the running time of your algorithm.