Problem 1. Perform k-selection to find the element e_1 with rank k_1. Perform k-selection again to find the element e_2 with rank k_2. The cost so far is $O(n)$. Then, scan S once again to report every element $e \in S$ between e_1 and e_2. This takes another $O(n)$ time because we only need to spend $O(1)$ on each $e \in S$.

Problem 2. Counterexample: $\mathcal{I} = \{[1, 4], [4, 5], [5, 8]\}$. The algorithm returns only $\{[4, 5]\}$ but the optimal solution is $\{[1, 4], [5, 8]\}$.

Problem 3. Identify any MST T of G. If e is an edge in T, we are done. Otherwise, T must contain a (unique) S-cross edge e'. Replacing e' with e gives another tree T'. As e has the minimum weight among all S-cross edges, the weight of T' cannot be higher than that of T. This means that T' must also be an MST.

Problem 4. $\{b, e\}, \{b, c\}, \{c, f\}, \{c, d\}, \{a, d\}$.

Problem 5.

\[
\begin{array}{c}
\text{} \\
0 \\
1 \\
1 \\
0 \\
b \\
c \\
d \\
a
\end{array}
\]

Problem 6.

<table>
<thead>
<tr>
<th>ℓ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>opt(ℓ)</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
</tr>
</tbody>
</table>

Problem 7.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Problem 8.

Lemma 1. Let I_1 be the first interval selected by the algorithm. There must exist an optimal solution that contains I_1.

Proof. Consider an arbitrary optimal solution S^*. Identify an arbitrary interval $I \in S^*$ that covers value 0. As I is at least as long as I_1, replacing I with I_1 gives another solution S with the same size as S^*. Therefore, S must be optimal. \[\square\]

Lemma 2. Let I_1, I_2, \ldots, I_k be the first $k \geq 2$ intervals selected by the algorithm (in this order). If $\{I_1, \ldots, I_{k-1}\}$ exists in some optimal solution, then there must exist an optimal solution that contains all of I_1, I_2, \ldots, I_k.

1
Proof. Consider an arbitrary optimal solution S^* that contains I_1, \ldots, I_{k-1}. Suppose that $I_{k-1} = [x, y]$. Thus, after adding I_{k-1} to S, Step 3 sets the value of a to $y + 1$.

Identify an arbitrary interval $I \in S^*$ that covers the value $a = y + 1$. As $I_{k-1} \cap [a, U]$ is at least as long as $I \cap [a, U]$, replacing I with I_k gives another solution S with the same size as S^*. Therefore, S must be optimal.

The algorithm’s optimality follows from the above two lemmas.

Problem 9. For each $i \in [0, n]$, define $A[1:i]$ as the prefix of A containing the first i elements. Given an integer $0 \in [1, n]$, define $\text{opt}(i)$ as the maximum sum that can be achieved by picking elements from $A[1:i]$ under the stated constraint. Clearly, $\text{opt}(0) = 0$ and $\text{opt}(1) = A[1]$.

Lemma 3. For $i \geq 2$, it holds that $\text{opt}(i) = \max\{\text{opt}(i-1), A[i] + \text{opt}(i-2)\}$.

- If the strategy does not choose $A[i]$, then the elements chosen also constitute an optimal solution for $A[1:i-1]$. Hence, $\text{opt}(i) = \text{opt}(i-1)$.
- If the strategy chooses $A[i]$, the rest of the elements chosen must constitute an optimal solution for $A[1:i-2]$ (notice that the strategy cannot pick $A[i-1]$ in this case). Hence, $\text{opt}(i) = A[i] + \text{opt}(i-2)$.

The lemma holds true because there are no other possibilities.

We can now compute $\text{opt}(i)$ in ascending order of i:

1. $\text{opt}(0) \leftarrow 0, \text{opt}(1) \leftarrow A[1]
2. \text{for } i \leftarrow 2 \text{ to } n
3. \text{if } \text{opt}(i-1) \leq A[i] + \text{opt}(i-2) \text{ then}
4. \quad \text{opt}(i) \leftarrow A[i] + \text{opt}(i-2)
5. \text{else}
5. \quad \text{opt}(i) \leftarrow \text{opt}(i-1)

It is clear that the running time is $O(n)$.

2