Dynamic Programming 1: Pitfall of Recursion

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
Today, we will start a series of lectures on **dynamic programming**, which is a technique for accelerating recursive algorithms.

Remark: Despite the word “programming”, the technique has nothing to do with programming languages.
Problem: Let A be an array of n positive integers.

Consider function

$$f(k) = \begin{cases}
0 & \text{if } k = 0 \\
\max_{i=1}^{k}(A[i] + f(k - i)) & \text{if } 1 \leq k \leq n
\end{cases}$$

Goal: Compute $f(n)$.

Example: Consider the following array A:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A[i]$</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Then, $f(1) = 1$, $f(2) = 5$, $f(3) = 8$, and $f(4) = 10$.
Pitfall of Recursion

Consider the following recursive algorithm for computing $f(k)$.

\[
\begin{align*}
&f(k) \\
&1. \text{ if } k = 0 \text{ then return } 0 \\
&2. \quad ans \leftarrow -\infty \\
&3. \quad \textbf{for } i \leftarrow 1 \text{ to } k \text{ do} \\
&4. \quad \quad \quad \text{tmp} \leftarrow A[i] + f(k - i) \\
&5. \quad \quad \quad \textbf{if } \text{tmp} > ans \text{ then } ans \leftarrow \text{tmp} \\
&6. \quad \textbf{return } ans \\
\end{align*}
\]

Computing $f(n)$ with the above algorithm incurs running time $\Omega(2^n)$ (left as a regular exercise).
Pitfall of Recursion

\(f(k) \)

1. \textbf{if} \(k = 0 \) \textbf{then return} 0
2. \(\text{ans} \leftarrow -\infty \)
3. \textbf{for} \(i \leftarrow 1 \) \textbf{to} \(k \) \textbf{do}
4. \quad \text{tmp} \leftarrow A[i] + f(k - i)
5. \quad \textbf{if} \text{tmp} > \text{ans} \textbf{then} \text{ans} \leftarrow \text{tmp}
6. \textbf{return} \text{ans}

Why is the algorithm so slow?

\textbf{Answer:} It computes \(f(x) \) for the same \(x \) repeatedly!

How many times do we need to call \(f(0) \) in computing \(f(1) \), \(f(2) \), ..., and \(f(6) \), respectively?
Pitfall of recursion:
A recursive algorithm does considerable redundant work if the same subproblem is encountered over and over again.

Antidote: dynamic programming.
Principle of dynamic programming

Resolve subproblems according to a certain order. Remember the output of every subproblem to avoid re-computation.
Problem: Let A be an array of n positive integers.

$$f(k) = \begin{cases}
0 & \text{if } k = 0 \\
\max_{i=1}^{k}(A[i] + f(k-i)) & \text{if } 1 \leq k \leq n
\end{cases}$$

Goal: Compute $f(n)$.

Order of subproblems: $f(1), \ldots, f(n)$.

Resolve subproblem $f(1)$: $O(1)$ time
Resolve subproblem $f(2)$: $O(2)$ time, given $f(1)$.

\ldots

Resolve subproblem $f(k)$: $O(k)$ time, given $f(1), \ldots, f(k-1)$.

\ldots

Resolve subproblem $f(n)$: $O(n)$ time, given $f(1), \ldots, f(n-1)$.

In total: $O(n^2)$ time.
Pseudocode of our algorithm:

dyn-prog
1. initialize an array \textit{ans} of size \textit{n}
2. define special value \textit{ans}[0] \leftarrow 0
3. \textbf{for} \textit{k} \leftarrow 1 \textbf{to} \textit{n} \textbf{do}
 /* assuming \textit{f}(0), \textit{f}(1), \ldots, \textit{f}(\textit{k} - 1) ready, compute \textit{f}(\textit{k}) */
4. \textit{ans}[\textit{k}] \leftarrow -\infty
5. \textbf{for} \textit{i} \leftarrow 1 \textbf{to} \textit{k} \textbf{do}
6. \textit{tmp} \leftarrow \textit{A}[\textit{i}] + \textit{ans}[\textit{k} - \textit{i}]
7. \textbf{if} \textit{tmp} > \textit{ans}[\textit{k}] \textbf{then} \textit{ans}[\textit{k}] \leftarrow \textit{tmp}

Time complexity: \textit{O}(n^2).