Greedy 3: Huffman Codes

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
Given an alphabet \(\Sigma \) (like the English alphabet), an encoding is a function that maps each letter in \(\Sigma \) to a binary string, called a codeword.

For example, suppose \(\Sigma = \{a, b, c, d, e, f\} \) and consider the encoding where \(a = 000, b = 001, c = 010, d = 011, e = 100, \) and \(f = 101 \). The word “bed” can be encoded as 001100011.
We can reduce the length of encoding if letters’ usage frequencies are known.

Suppose that, in a document, 10% of the letters are \(a \), namely, the letter has frequency 10%. Similarly, suppose that letters \(b \), \(c \), \(d \), \(e \), and \(f \) have frequencies 20%, 13%, 9%, 40%, and 8%, respectively.

If we use the encoding \(a = 100 \), \(b = 111 \), \(c = 101 \), \(d = 1101 \), \(e = 0 \), \(f = 1100 \), the average number of bits per letter is:

\[
3 \cdot 0.1 + 3 \cdot 0.2 + 3 \cdot 0.13 + 4 \cdot 0.09 + 1 \cdot 0.4 + 4 \cdot 0.08 = 2.37.
\]

This is better than using 3 bits per letter.
What is wrong with the encoding \(e = 0, b = 1, c = 00, a = 01, d = 10, f = 11 \)? **Ambiguity in decoding!** For example, does the string 10 mean “be” or “d”?

To allow decoding, we enforce the following constraint:

No letter’s codeword should be a prefix of another letter’s codeword.

An encoding satisfying the constraint is said to be a **prefix code**.

Example: The encoding \(a = 100, b = 111, c = 101, d = 1101, e = 0, f = 1100 \) is a prefix code. Just for fun, try decoding the following binary string.

\[
10011010100110011100
\]
The Prefix Coding Problem

For each letter $\sigma \in \Sigma$, let $freq(\sigma)$ denote the frequency of σ. Also, denote by $len(\sigma)$ the number of bits in the codeword of σ.

Given an encoding, its average length is

$$\sum_{\sigma \in \Sigma} freq(\sigma) \cdot len(\sigma).$$

The objective of the prefix coding problem is to find a prefix code for Σ with the shortest average length.
A **code tree** on Σ as a binary tree T satisfying:

- Every leaf node of T corresponds to a unique letter in Σ; every letter in Σ corresponds to a unique leaf node in T.

- For every internal node of T, its left edge (if exists) is labeled 0, and its right edge (if exists) is labeled 1.

T generates a prefix code as follows:

- For each letter $\sigma \in \Sigma$, generate its codeword by concatenating the bit labels of the edges on the path from the root of T to σ.

Think: Why must the encoding be a prefix code?
Lemma: Every prefix code is generated by a code tree.

The proof will be left as a regular exercise.

Example: For our encoding \(a = 100, b = 111, c = 101, d = 1101, e = 0, \) and \(f = 1100, \) the code tree is:

```
          0 1
         /   \
        0 1
       /   \
      a     c
     /     / 1
   0 1 0 1
  /   /  \
 f d b
```
Let T be the code tree generating a prefix code. Given a letter σ of Σ, its code word length $\text{len}(\sigma)$ is the \textbf{level} of its leaf node $\text{level}(\sigma)$ in T (i.e., the number edges from the root to node σ).

\textbf{Example:}

\begin{center}
\begin{tikzpicture}[level distance=1.5cm, sibling distance=1.5cm, scale=0.5, every node/.style={draw, circle}]
\node (e) {e}
 child {node (a) {a} edge from parent node [auto,swap] {0}}
 child {node (b) {b} edge from parent node [auto] {1}}
\end{tikzpicture}
\end{center}

The levels of e, a, c, f, d, and b are 1, 3, 3, 4, 4, and 3, respectively.

Hence:

$$\text{avg length} = \sum_{\sigma \in \Sigma} \text{freq}(\sigma) \cdot \text{len}(\sigma) = \sum_{\sigma \in \Sigma} \text{freq}(\sigma) \cdot \text{level}(\sigma) = \text{avg height of } T$$

\textbf{Goal (restated):} Find a code tree on Σ with the smallest average height.
Huffman’s Algorithm

Next, we will see a simple algorithm for solving the prefix coding problem.

Let $n = |\Sigma|$. In the beginning, create a set S of n stand-alone leaves, each corresponding to a distinct letter in Σ. If leaf z is for letter σ, define the **frequency** of z to be $freq(\sigma)$.
Huffman’s Algorithm

Then, repeat until $|S| = 1$:

1. Remove from S two nodes u_1 and u_2 with the smallest frequencies.
2. Create a node v with u_1 and u_2 as the children. Set the frequency of v to be the frequency sum of u_1 and u_2.
3. Add v to S.

When $|S| = 1$, we have obtained a code tree. The prefix code derived from this tree is a Huffman code.
Example

Consider our earlier example where a, b, c, d, e, and f have frequencies 0.1, 0.2, 0.13, 0.09, 0.4, and 0.08, respectively.

Initially, S has 6 nodes:

$$
\begin{array}{cccccc}
10 & 20 & 13 & 9 & 40 & 8 \\
\hline
a & b & c & d & e & f
\end{array}
$$

The number in each circle represents frequency (e.g., 10 means 10%).
Example

Merge the two nodes with the smallest frequencies 8 and 9. Now S has 5 nodes \(\{a, b, c, e, u_1\} \):
Example

Merge the two nodes with the smallest frequencies 10 and 13. Now S has 4 nodes $\{b, e, u_1, u_2\}$:
Example

Merge the two nodes with the smallest frequencies 17 and 20. Now S has 3 nodes \{$e, u_2, u_3\}$:
Example

Merge the two nodes with the smallest frequencies 23 and 37. Now S has 2 nodes $\{e, u_4\}$:
Example

Merge the two remaining nodes. Now S has a single node left.

This is the final code tree.
It is easy to implement the algorithm in $O(n \log n)$ time (exercise).

Next, we prove that the algorithm gives an optimal code tree, i.e., one that minimizes the average height.
Lemma: In an optimal code tree, every internal node of T must have two children.

The proof is left as a regular exercise.
Lemma: Let σ_1 and σ_2 be two letters in Σ with the lowest frequencies. There exists an optimal code tree where σ_1 and σ_2 have the same parent.

Proof: W.l.o.g., assume $freq(\sigma_1) \leq freq(\sigma_2)$. Let T be any optimal code tree. Let p be an arbitrary internal node with the largest level in T. By Property 1, p must have two leaves. Let x and y be letters corresponding to those leaves such that $freq(x) \leq freq(y)$. Swap σ_1 with x and σ_2 with y, which gives a new code tree T'. Note that both σ_1 and σ_2 are children of p in T'.

Convince yourself that the average length of T' is at most that of T. Hence, T' is optimal as well. \square
Theorem: Huffman’s algorithm produces an optimal prefix code.

Proof: We will prove by induction on the size n of the alphabet Σ.

Base Case: $n = 2$. In this case, the algorithm encodes one letter with 0, and the other with 1, which is clearly optimal.

General Case: Assuming the theorem’s correctness for $n = k - 1$ where $k \geq 3$, next we show that it also holds for $n = k$.
Proof (cont.): Let σ_1 and σ_2 be two letters in Σ with the lowest frequencies.

By Property 2, there is an optimal code tree T on Σ where leaves σ_1 and σ_2 are the children of the same parent p.

Let T_{huff} be the code tree returned by Huffman’s algorithm on Σ. Convince yourself that σ_1 and σ_2 have the same parent q in T_{huff}.
Proof (cont.): Construct a new alphabet Σ' from Σ by removing σ_1 and σ_2, and adding a letter σ^* with frequency $\text{freq}(\sigma_1) + \text{freq}(\sigma_2)$.

Let T' be the tree obtained by removing leaves σ_1 and σ_2 from T (thus making p a leaf). T' is a code tree on Σ' where p corresponds to σ^*.

Observe:

$$\text{avg height of } T = \text{avg height of } T' + \text{freq}(\sigma_1) + \text{freq}(\sigma_2).$$

Let T'_{huff} be the tree obtained by removing leaves σ_1 and σ_2 from T_{huff} (thus making q a leaf). T'_{huff} is a code tree on Σ' where q corresponds to σ^*.

$$\text{avg height of } T_{\text{huff}} = \text{avg height of } T'_{\text{huff}} + \text{freq}(\sigma_1) + \text{freq}(\sigma_2).$$
Proof (cont.): T'_{huff} is the output of Huffman's algorithm on Σ'. By our inductive assumption, T'_{huff} is optimal on Σ'. Thus:

$$\text{avg height of } T'_{huff} \leq \text{avg height of } T'$$

Hence:

$$\text{avg height of } T_{huff} \leq \text{avg height of } T.$$