Divide and Conquer

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
In this lecture, we will discuss the **divide and conquer** technique for designing algorithms with strong performance guarantees. Our discussion will be based on the following problems:

1. Sorting (a review of merge sort)
2. Counting inversions
3. Dominance counting
4. Matrix multiplication
Principle of divide and conquer:

Divide a problem into sub-problems, solve the sub-problems by recursion, and derive the final answer from the sub-problems’ outputs.
Sorting
Problem: Given an array A of n distinct integers, produce another array where the same integers have been arranged in ascending order.

- **Divide:** Let A_1 be the array containing the first $\lceil n/2 \rceil$ elements of A, and A_2 be the array containing the other elements of A. Sort A_1 and A_2 recursively.

- **Conquer:** Merge the two sorted arrays A_1 and A_2 in ascending order. This can be done in $O(n)$ time.

This is the merge sort algorithm.
Sorting

Running Time: Let $f(n)$ denote the worst-case cost of the algorithm on an array of size n. Then:

$$f(n) \leq 2 \cdot f(\lceil n/2 \rceil) + O(n)$$

which gives $f(n) = O(n \log n)$.

Yufei Tao

Divide and Conquer
Counting Inversions
Counting Inversions

Let: \(A \) = an array of \(n \) distinct integers.

An **inversion** is a pair of \((i, j)\) such that

- \(1 \leq i < j \leq n \), and

Example: Consider \(A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6) \). Then \((1, 2)\) is an inversion because \(A[1] = 10 > A[2] = 3 \). So are \((1, 3), (3, 4), (4, 5)\), and so on. There are in total 29 inversions.

Think: How many inversions can there be in the worst case?
Answer: \(\binom{n}{2} = \Theta(n^2) \).
Problem: Given an array A of n distinct integers, count the number of inversions.

We will do in the class: $O(n \log^2 n)$ time.

You will do as an exercise: $O(n \log n)$ time.
Counting Inversions

- **Divide:** Let A_1 be the array containing the first $\lceil n/2 \rceil$ elements of A, and A_2 be the array containing the other elements of A. Solve the “counting inversions” problem recursively on A_1 and A_2, respectively. By doing so, we have already obtained the number m_1 of inversions in A_1, and similarly, the number m_2 for A_2.

- **Conquer:** It remains to count the number of crossing inversions (i, j) where $i \in A_1$ and $j \in A_2$.
Counting Inversions

$A_1 = \text{the array containing the first } \left\lfloor n/2 \right\rfloor \text{ elements of } A$

$A_2 = \text{the array containing the other elements of } A.$

Sort A_1.

For each element $e \in A_2$, count how many crossing inversions e produces using binary search.

Example (cont.): $A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)$.

$A_1 = (2, 3, 8, 9, 10) \text{ (sorted)}, A_2 = (5, 4, 1, 7, 6)$

Element 5 produces 3 crossing inversion
Element 4 produces 3, too.
Elements 1, 7, and 6 produce 5, 3, and 3 crossing inversions, respectively.

Think: How to obtain each count with binary search?

In total, $n/2$ binary searches are performed, which takes $O(n \log n)$ time.
Counting Inversions

Running Time: Let $f(n)$ denote the worst-case cost of the algorithm on an array of size n. Then:

$$f(n) \leq 2 \cdot f(\lceil n/2 \rceil) + O(n \log n)$$

which gives $f(n) = O(n \log^2 n)$.

Dominance Counting
Dominance Counting

Denote by \mathbb{Z} the set of integers. Given a point p in two-dimensional space \mathbb{Z}^2, denote by $p[1]$ and $p[2]$ its x- and y-coordinate, respectively.

Given two distinct points p and q, we say that q dominates p if $p[1] \leq q[1]$ and $p[2] \leq q[2]$; see the figure below:

![Diagram of dominance relationship between points p and q](image.png)
Let P be a set of n points in \mathbb{Z}^2 with distinct x-coordinates. Find, for each point $p \in P$, the number of points in P that are dominated by p.

Example:

We should output: $(p_1, 0), (p_2, 1), (p_3, 0), (p_4, 2), (p_5, 2), (p_6, 5), (p_7, 2), (p_8, 0)$.
Let P be a set of n points in \mathbb{Z}^2 with distinct x-coordinates. Find, for each point $p \in P$, the number of points in P that are dominated by p.

We will do in the class: $O(n \log^2 n)$ time.
You will do as an exercise: $O(n \log n)$ time.
Dominance Counting

Divide: Find a vertical line \(\ell \) such that \(P \) has \(\lceil n/2 \rceil \) points on each side of the line.

Example:

\[p_1 \quad p_2 \quad p_3 \quad p_4 \quad p_5 \quad p_6 \quad p_7 \quad p_8 \]

Think: How to find such \(\ell \) in \(O(n \log n) \) time? How about \(O(n) \) time?
Dominance Counting

Divide:

\[P_1 = \text{the set of points of } P \text{ on the left of } \ell \]

\[P_2 = \text{the set of points of } P \text{ on the right of } \ell \]

Example:

\[P_1 = \{ p_1, p_2, p_3, p_4 \} \]

\[P_2 = \{ p_5, p_6, p_7, p_8 \}. \]
Divide:
Solve the dominance counting problem on P_1 and P_2 separately.

Example:

On P_1, we have obtained: $(p_1, 0), (p_2, 1), (p_3, 0), (p_4, 2)$.

On P_2, we have obtained: $(p_5, 0), (p_6, 1), (p_7, 0), (p_8, 0)$.

The counts obtained for the points in P_1 are final (think: why?).
Dominance Counting

Conquer:
It remains to count, for each point $p_2 \in P_2$, how many points in P_1 it dominates.

Example:

On P_2, we have obtained: $(p_5, 0), (p_6, 1), (p_7, 0), (p_8, 0)$.

Regarding p_5, for example, we still need to find out that it dominates 2 points from P_1.

The x-coordinates do not matter any more!
Dominance Counting

Conquer:

Sort P_1 by y-coordinate.
Then, for each point $p_2 \in P_2$, we can obtain the number points in P_1 dominated by p_2 using binary search.

Example:

P_1 in ascending of y-coordinate:
p_3, p_1, p_4, p_2.

How to perform binary search to obtain the fact that p_5 dominates 2 points in P_1?
- Search using the y-coordinate of p_5.
Dominance Counting

Analysis:

Let $f(n)$ be the worst-case running time of the algorithm on n points. Then:

$$f(n) \leq 2f(\lfloor n/2 \rfloor) + O(n \log n)$$

which solves to $f(n) = O(n \log^2 n)$.
Matrix Multiplication
Matrix Multiplication

Problem: Given two $n \times n$ matrices A and B, compute their product AB.

We store an $n \times n$ matrix with an array of length n^2 in “row-major” order.

Example: $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is stored as $(1, 2, 3, 4)$.

Note that any $A[i, j]$ — the element of A at the i-th row and j-th column — can be accessed in $O(1)$ time.

Trivial: $O(n^3)$ time
We will do in the class: $O(n^{2.81})$ time for n being a power of 2
You will do as an exercise: $O(n^{2.81})$ time for any n.

Yufei Tao
Divide and Conquer
Matrix Multiplication

Warm Up: Suppose we want to compute \[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 e & f \\
 g & h
\end{bmatrix}. \]
How many multiplication operations do we need to perform?

Trivial: 8.

Non-trivial: 7.

\[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 e & f \\
 g & h
\end{bmatrix} =
\begin{bmatrix}
 p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\
 p_3 + p_4 & p_1 + p_5 - p_3 - p_7
\end{bmatrix}
\]

where

\[
\begin{align*}
p_1 &= a(f - h) \\
p_2 &= (a + b)h \\
p_3 &= (c + d)e \\
p_4 &= d(g - e) \\
p_5 &= (a + d)(e + h) \\
p_6 &= (b - d)(g + h) \\
p_7 &= (a - c)(e + f)
\end{align*}
\]
Matrix Multiplication (Strassen’s Algorithm)

Recall that the input A and B are order-n (i.e., $n \times n$) matrices. Assume for simplicity that n is a power of 2. Divide each of A and B into 4 submatrices of order $n/2$:

$$
A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}
$$

It is easy to verify:

$$
AB = \begin{bmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{bmatrix}
$$

How many order-$(n/2)$ matrix multiplications do we need?

Trivial: 8.

Non-trivial: 7 — see the next slide.
Matrix Multiplication

\[
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
=
\begin{bmatrix}
p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\
p_3 + p_4 & p_1 + p_5 - p_3 - p_7
\end{bmatrix}
\]

\[
p_1 = A_{11}(B_{12} - B_{22})
\]
\[
p_2 = (A_{11} + A_{12})B_{22}
\]
\[
p_3 = (A_{21} + A_{22})B_{11}
\]
\[
p_4 = A_{22}(B_{21} - B_{11})
\]
\[
p_5 = (A_{11} + A_{22})(B_{11} + B_{22})
\]
\[
p_6 = (A_{12} - A_{22})(B_{21} + B_{22})
\]
\[
p_7 = (A_{11} - A_{21})(B_{11} + B_{12})
\]

If \(f(n)\) is the worst-case time of computing the product of two order-\(n\) matrices, then each of \(p_i\) (\(1 \leq i \leq 7\)) can be computed in \(f(n/2) + O(n^2)\) time.
Matrix Multiplication

Therefore:

\[f(n) \leq 7f(n/2) + O(n^2) \]

which solves to \(f(n) = O(n^{\log_2 7}) = O(n^{2.81}) \).