CSCI3160: Regular Exercise Set 9

Prepared by Yufei Tao

Problem 1. Prove the correctness of Dijkstra’s algorithm (when the edges have non-negative weights).

Problem 2. Consider again your proof for Problem 1. Point out the place that requires edge weights to be non-negative.

Problem 3. Consider a directed simple graph \(G = (V, E) \) where each edge \(e \in E \) has an arbitrary weight \(w(e) \) (which can be negative). It is known that \(G \) does not have negative cycles. Prove: given any vertices \(s, t \in V \), at least one shortest path from \(s \) to \(t \) is a simple path (i.e., no vertex appears twice on the path).

Remark: This implies that the path must have at most \(|V| - 1 \) edges.

Problem 4*(SSSP in a DAG). Consider a simple acyclic directed graph \(G = (V, E) \) where each edge \(e \in E \) has an arbitrary weight \(w(e) \) (which can be negative). Solve the SSSP problem on \(G \) in \(O(|V| + |E|) \) time.

Problem 5. Let \(G = (V, E) \) be a simple directed graph where each edge \(e \in E \) carries a weight \(w(e) \), which can be negative. It is guaranteed that \(G \) has no negative cycles. Prove: given any vertices \(s, t \in V \), at least one shortest path from \(s \) to \(t \) is a simple path (i.e., no vertex appears twice on the path).

Problem 6*(SSSP in a DAG). Let \(G = (V, E) \) be a simple directed graph where the weight of an edge \((u, v) \) is \(w(u, v) \). Prove: the following algorithm correctly decides whether \(G \) has a negative cycle.

algorithm negative-cycle-detection
1. pick an arbitrary vertex \(s \in V \)
2. initialize \(dist(s) = 0 \) and \(dist(v) = \infty \) for every other vertex \(v \in V \)
3. **for** \(i = 1 \) **to** \(|V| - 1 \)
4. **relax** all the edges in \(E \)
5. **for** each edge \((u, v) \) \(\in E \)
6. **if** \(dist(v) > dist(u) + w(u, v) \) **then**
7. **return** “there is a negative cycle”
8. **return** “no negative cycles”