CSCI3160: Regular Exercise Set 8
Prepared by Yufei Tao

Problem 1. Consider the SCC graph G^{SCC} discussed in our lecture. Prove: G^{SCC} is a DAG (directed acyclic graph).

Solution. Suppose that G^{SCC} contains a cycle. Let S_1 and S_2 be two arbitrary SCCs inside the circle. By how G^{SCC} is constructed, we can infer:

- in G, each vertex of S_1 can reach all the vertices of S_2;
- in G, each vertex of S_2 can reach all the vertices of S_1.

Thus, S_1 violates the maximality condition of SCC, yielding a contradiction.

Problem 2. Let $G = (V, E)$ be a directed simple graph stored in the adjacency-list format. Define $G^{rev} = (V, E^{rev})$ be the reverse graph of G, namely, $E^{rev} = \{(v, u) \mid (u, v) \in E\}$. Design an algorithm to produce the adjacency list of G^{rev} in $O(|V| + |E|)$ time. You can assume that $V = \{1, 2, ..., n\}$.

Solution. First, create an empty linked list $L(u)$ for each vertex $u \in V$, and initialize an array A of size $|V|$ where $A[u]$ stores the head pointer to $L(u)$ (note: u is an integer). For each vertex $u \in V$, the adjacency list of G stores the out-neighbors of u in a linked list; we scan this linked list and, for each out-neighbor v of u, add u to $L(v)$. After completing the procedure for all $u \in V$, the set $\{L(u) \mid u \in V\}$ constitutes the adjacency list of G^{rev}.

Problem 3. Implement the SCC algorithm discussed in our lecture in $O(|V| + |E|)$ time. You can assume that $V = \{1, 2, ..., n\}$.

Solution. To implement Step 1, simply perform DFS on the input graph $G = (V, E)$ in $O(|V| + |E|)$ time. Store the turn-black order in an array A, namely, $A[i] = u$ (for $i \in [1, n]$) if vertex $u \in V$ has label i. It is easy to generate A during the aforementioned DFS without increasing the time complexity.

Step 2 can be completed using the solution to Problem 2.

To implement Step 3, start DFS from vertex $A[n]$ (i.e., the vertex having the largest label). When a restart is needed, examine $A[n-1], A[n-2], ...$ until reaching the first vertex $A[i]$ whose color is still white. Start the second DFS with $A[i]$. When another restart is needed, choose the starting vertex in the same manner. Repeat the above until all vertices have been visited by DFS.

Problem 4. Let $G = (V, E)$ be a DAG, where each vertex $u \in V$ carries an integer weight denoted as w_u. Let $R(u)$ be the set of vertices in G that u can reach (i.e., for each vertex $v \in R(u)$, G has a path from u to v); note that $u \in R(u)$ (i.e., a node can reach itself). Define $W(u) = \min_{v \in R(u)} w_v$. Design an algorithm to compute the $W(u)$ values of all $u \in V$ in $O(|V| + |E|)$ time. (Hint: dynamic programming).

Solution. For each $u \in V$, let $Out(u)$ be the set of out-neighbors of u. We have:

$$W(u) = \begin{cases} w_u & \text{if } Out(u) = \emptyset \\ \min\{w_u, \min_{v \in Out(u)} W(v)\} & \text{otherwise} \end{cases}$$
We can therefore calculate the \(W(u) \) values of all \(u \in V \) by dynamic programming (go over the vertices by reversing a topological order).

Problem 5*. Let \(G = (V, E) \) be an arbitrary directed simple graph, where each vertex \(u \in V \) carries an integer weight denoted as \(w_u \). Let \(R(u) \) be the set of vertices in \(G \) that \(u \) can reach; note that \(u \in R(u) \). Define \(W(u) = \min_{u \in R(u)} w_u \). Design an algorithm to compute the \(W(u) \) values of all \(u \in V \) in \(O(|V| + |E|) \) time.

Solution. Observe that if \(u \) and \(v \) belong to the same SCC of \(G \), then \(R(u) \) is exactly the same as \(R(v) \).

First, obtain the SCCs of \(G \) in \(O(|V| + |E|) \) time and then generate the SCC graph \(G^{\text{sc}} \) in \(O(|V| + |E|) \) time (this is a special exercise of this week). For each SCC \(S \), define the weight of its vertex in \(G^{\text{sc}} \) as \(w_S = \min_{u \in S} w_u \). Define \(R^{\text{sc}}(S) \) as the set of vertices in \(G^{\text{sc}} \) that \(S \) can reach, and define \(W(S) = \min_{T \in R^{\text{sc}}(S)} w_T \). Use the solution to Problem 4 to find the \(W(S) \) values for all the vertices \(S \) in \(G^{\text{sc}} \).

For every vertex \(u \) in \(G \), its \(W(u) \) value equals exactly \(W(S) \) where \(S \) is the SCC containing \(u \).