Problem 1. Recall that a tree is a connected graph without cycles. Prove:

- Every tree has at least a leaf node, i.e., a node with degree 1 (i.e., a node incident to only one edge).
- Every tree with n nodes has precisely $n - 1$ edges.

Solution. Proof of the first statement: Start from an arbitrary node u. If u is not a leaf, then walk across one of its edges to reach a neighbor node, and delete the edge that was crossed. Then, set u to that neighbor node, and repeat the process. In this process, every node will be encountered at most once (if a node is seen twice, there must be a cycle, and hence cause a contradiction). Since the tree has a finite number of nodes, the process must come to an end eventually. The last node reached must be a leaf.

Proof of the second statement: We will prove the claim by induction on n. When $n = 2$, the tree has only one edge; and the claim is clearly true. Next, assuming the claim’s correctness for $n = k$, we will prove that it also holds for any tree T with $n = k + 1$ nodes. From the first statement, we know that there must be a leaf node u in T. Remove u from T and the only edge incident to u. The remaining tree has k nodes which, by the inductive assumption, must have $k - 1$ edges. It thus follows that T has k edges.

Problem 2. Let G be a simple graph with n vertices and $n - 1$ edges. Prove: if G is connected (i.e., a path exists between any two vertices in G), then G must be a tree.

Solution. Consider an arbitrary spanning tree T of G. Because G is connected, T must include all the n vertices of G. From the statements of Problem 1, we know that T must have $n - 1$ edges. This means that T has all the edges of G and, hence, $G = T$.

Problem 3 (one for one, still a tree). Let T be a tree. Add a new edge between two vertices in T; this gives us a graph G with a cycle cyc. Now, remove from G an arbitrary edge e' of cyc; let G' be the graph thus obtained. Prove: G' is a tree.

Solution. Let n be the number of vertices in T. It is clear that G' has $n - 1$ edges. Next, we will prove that G' is connected (i.e., a path exists between any two of its vertices), which (by the statement of Problem 2) shows that G' is a tree.

Let u and v be two arbitrary vertices in G'. Consider an arbitrary path π from u to v in G (this path must exist because G is connected). If π does not use edge e' (i.e., the edge deleted), then π exists in G' and, hence, u and v are connected in G'. Now, consider the case where e' is in π. Assume, without loss of generality, that $e' = \{u', v'\}$ and that π goes from u to u', crosses e' to v', and then continues onto v'. This means that, in G', u is connected to u' and v is connected to v'. It remains to prove that u' is connected to v' in G', which will tell us that u is connected to v in G'.

Remember that e' is in the cycle cyc. This implies that, in cyc, we can find a path from u' to v' that does not pass through e'. This path must still remain in G'. Therefore, we conclude that u' is connected to v' in G'.

Problem 4. Let S be a set of integer pairs of the form (id, v). We will refer to the first field as the \textit{id} of the pair, and the second as the \textit{key} of the pair. Design a data structure that supports the following operations:

- Insert: add a new pair (id, v) to S (you can assume that S does not already have a pair with the same id).
- Delete: given an integer t, delete the pair (id, v) from S where $t = id$, if such a pair exists.
- DeleteMin: remove from S the pair with the smallest key, and return it.

Your structure must consume $O(n)$ space, and support all operations in $O(\log n)$ time where $n = |S|$.

Solution. Maintain S in two binary search trees T_1 and T_2, where the pairs are indexed on ids in T_1, and on keys in T_2. We support the three operations as follows:

- Insert: simply insert the new pair (id, v) into both T_1 and T_2.
- Delete: first find the pair with id t in T_1, from which we know the key v of the pair. Now, delete the pair (t, v) from both T_1 and T_2.
- DeleteMin: find the pair with the smallest key v from T_2 (which can be found by continuously descending into left child nodes). Now we have its id t as well. Remove (t, v) from T_1 and T_2.

Problem 5. Prove: in a weighted undirected graph $G = (V, E)$ where all the edges have distinct weights, the minimum spanning tree (MST) is unique.

Solution. We will prove that the tree T returned by the Prim’s algorithm is the only MST. Set $n = |V|$. Let $e_1, e_2, \ldots, e_{n-1}$ be the sequence of edges that the algorithm adds to T. Suppose, on the contrary, that there is another MST T'. Let k be the smallest i such that e_i is not in T'.

- Case 1: $k = 1$. This means that e_1, which is the edge with the smallest weight, is not in T'. Add e_1 to T' to create a cycle, and remove from the cycle the edge with the largest weight. This create another spanning tree whose cost is strictly smaller than T' (remember: all the edges are distinct), contradicting the fact that T' is an MST.

- Case 2: $k > 1$. Recall that edges $e_1, e_2, \ldots, e_{k-1}$ form a tree. Let S be the set of vertices in this tree. Add $e_k = \{u, v\}$ into T' to create a cycle. Suppose $u \in S$; it follows that $v \notin S$. Let us walk on the cycle from v, by going into S, traveling within S, and stopping as soon as we exit S. Let $\{u', v'\}$ be the last edge crossed (namely, one of u', v' is in S, while the other one is not). By the way Prim’s algorithm runs and the fact that all edges have distinct weights, we know that $\{u, v\}$ has a smaller weight than $\{u', v'\}$. Thus, removing $\{u', v'\}$ from T' gives spanning tree with strictly smaller cost, which creates a contradiction.

Problem 6. Describe how to implement the Prim’s algorithm on a graph $G = (V, E)$ in $O((|V| + |E|) \cdot \log |V|)$ time.

Solution. Remember that the algorithm incrementally grows a tree T which in the end becomes an MST. Let S be the set of vertices that are currently in T. At all times, the algorithm maintains, for every vertex $v \in V \setminus S$, its lightest cross edge best-cross(v) and the weight of this edge.

We maintain a set P of triples, one for every vertex $u \in V \setminus S$. Specifically, the triple of u has the form (u, v, t), indicating that best-cross(u) is the edge $\{u, v\}$ (i.e., $v \in S$), whose weight is t. We need the following operations on P:
• Insert\((u, v, t)\): add a triple \((u, v, t)\) to \(P\).

• DecreaseKey\((u, \{u, v\}')\): given a vertex \(u \in S\) and a cross edge \(\{u, v\}'\) (i.e., \(v' \notin S\)), this operation does the following. First, fetch the triple \((u, v, t)\). Then, compare \(t\) to the weight \(t'\) of \(\{u, v\}'\). If \(t' < t\), update the triple \((u, v, t)\) to \((u, v', t')\); otherwise, do nothing.

• DeleteMin: Remove from \(P\) the triple \((u, v, t)\) with the smallest \(t\).

We can store \(P\) in a data structure of Problem 4 which supports all operations in \(O(\log |V|)\) time (note: DecreaseKey can be implemented as a Delete followed by an Insert). Besides the above structure, we also store an array \(A\) of length \(|V|\) to so that we can query in constant time, for any vertex \(v \in V\), whether \(v\) is in \(S\) currently.

Now we can implement the algorithm as follows. Let \(\{x, y\}\) be an edge with the smallest weight in \(G\). The set \(S\) contains only \(x\) and \(y\) at this point. For every vertex \(u \in V \setminus S\) where \(S = \{x, y\}\), we check whether \(u\) has cross edges to \(x\) and \(y\). If neither edge exists, insert triple \((u, \text{nil}, \infty)\) to \(P\). Otherwise, suppose without loss of generality that \(\{u, x\}\) is the lighter cross edge of \(u\), and it has weight \(t\); insert a triple \((u, x, t)\) into \(P\).

Repeat the following until \(P\) is empty:

• Perform a DeleteMin to obtain a triple \((x, y, t)\).

• Recall that vertex \(x\) should be added to \(S\), which may need to change the cross edges of some other vertices. To implement this, for every edge \(\{x, y\}\) of \(x\) with \(y \notin S\), perform DecreaseKey\((x, \{x, y\})\).