CSCI3160: Regular Exercise Set 2

Prepared by Yufei Tao

Problem 1 (Faster Algorithm for Finding the Number of Crossing Inversions). Let S_1 and S_2 be two disjoint sets of n integers. Assume that S_1 is stored in an array A_1, and S_2 in an array A_2. Both A_1 and A_2 are sorted in ascending order. Design an algorithm to find the number of such pairs (a, b) satisfying all of the following conditions: (i) $a \in S_1$, (ii) $b \in S_2$, and (iii) $a > b$. Your algorithm must finish in $O(n)$ time (we gave an $O(n \log n)$-time algorithm in the class).

Solution. Merge A_1 and A_2 into one sorted list A, which takes $O(n)$ time. Scan the elements of A in ascending order. In the meantime, maintain the number t of elements that (i) originate from A_2, and (ii) have already been scanned so far: this can be done by setting t to 0 in the beginning, and incrementing it each time an element originating from A_2 is scanned. Furthermore, also maintain a counter c as follows: $c = 0$ in the beginning; every time an element originating from A_1 is seen, increase c by the current value of t. The final c at the end of the algorithm is the number of crossing inversions.

Problem 2 (Faster Algorithm for Finding the Number of Inversions). Given an array A of n integers, design an algorithm to find the number of inversions in $O(n \log n)$ time.

Solution. We will solve a more challenging problem: besides reporting the number of inversions, the algorithm also needs to sort A in ascending order. Break A at the middle into two arrays A_1 and A_2 each with at most $\lceil n/2 \rceil$ elements. Recursively, find the number c_1 of inversions in A_1 and the number c_2 of inversions in A_2. At this moment, both A_1 and A_2 have been sorted. We can then apply the algorithm in Problem 1 to find the number of crossing inversions in $O(n)$ time. Finally, merge A_1 and A_2 into a sorted array using $O(n)$ time. It is rudimentary to verify that the running time is $O(n \log n)$.

Problem 3. Give an algorithm of $O(n \log n)$ expected time to solve the dominance counting problem discussed in the class.

Solution. We will solve a more challenging problem: besides reporting the dominance counts, the algorithm should also sort P in ascending order.

As discussed in the class, our original algorithm divides P into two halves P_1 and P_2 using a vertical line ℓ, and then recurse on P_1 and P_2 respectively. Upon returning from the recursion, the points of P_1 and P_2 have been sorted by y-coordinate. We still need to find, for each point $p_2 \in P_2$, the number of points $p_1 \in P_1$ that are dominated by p_2. Next we show that this can be done in $O(n)$ time. Merge P_1 and P_2 into one sorted list P, where the points are sorted in ascending order by y-coordinate. Scan P. In the meantime, maintain the number t of points that (i) originate from P_1, and (ii) have already been scanned so far. Every time a point p_2 originating from P_2 is seen, the number of points $p_1 \in P_1$ dominated by p_2 is precisely the current value of t. To complete the algorithm, return the sorted list of P. The overall time complexity now becomes $O(n \log n)$.

Problem 4 (Section 4.1 of the Textbook). Let A be an array of n integers (A is not necessarily sorted). Each integer in A may be positive or negative. Given i, j satisfying $1 \leq i \leq j \leq n$, define sub-array $A[i:j]$ as the sequence $(A[i], A[i+1], ..., A[j])$, and the weight of $A[i:j]$ as

1. Give an algorithm to find a sub-array of with the largest weight, among all sub-arrays \(A[i : j] \) with \(j = n \). Your algorithm must finish in \(O(n) \) time.

2. Give an algorithm to find a sub-array with the largest weight in \(O(n \log n) \) time (among all the possible sub-arrays).

Solution.

Subproblem 1: Scan the elements of \(A \) from \(A[n] \) to \(A[1] \). At any time, maintain the sum \(s \) of the elements already scanned: at the beginning \(s = 0 \); after scanning an element \(A[i] \), add \(A[i] \) to \(s \). Every time we finish doing so for element \(A[i] \), the current value \(s \) is precisely the weight of \(A[i : n] \). In this way, we obtain the weights of all sub-arrays \(A[n : n], A[n-1 : n], \ldots, A[1 : n] \) (in this order) in \(O(n) \) time. The maximum weight can then be found easily.

Subproblem 2: Break \(A \) into two halves: array \(A_1 \) which contains the first \(\lceil n/2 \rceil \) elements, and array \(A_2 \) which contains the rest. Recursively, find the sub-array of \(A_1 \) with the largest weight, and then the sub-array of \(A_2 \) with the largest weight. It remains to consider the “crossing” sub-arrays \(A[i : j] \) where \(i \leq \lceil n/2 \rceil \) and \(j > \lceil n/2 \rceil \). In particular, we want to find the “best” crossing sub-array, i.e., the one with the maximum weight. Then, the sub-array to output can be decided easily from the three sub-arrays aforementioned.

We say that a sub-array \(A_1[i : j] \) is right grounded if \(j = \lceil n/2 \rceil \), and a sub-array \(A_2[i : j] \) is left grounded if \(i = 1 \). A crucial observation is that the “best” crossing sub-array must be the concatenation of

- the right grounded sub-array in \(A_1 \) with the maximum weight, and
- the left grounded sub-array in \(A_2 \) with the maximum weight.

From Subproblem 1, we know that each of the above two grounded sub-arrays can be found in \(O(n) \) time. Therefore, if \(f(n) \) is the time of solving the problem on an array of length \(n \), it holds that \(f(n) \leq 2 \cdot f(\lceil n/2 \rceil) + O(n) \), which gives \(f(n) = O(n \log n) \).

Problem 5. In the class, we explained how to multiply two \(n \times n \) matrices in \(O(n^{2.81}) \) time when \(n \) is a power of 2. Explain how to ensure the running time for any value of \(n \).

Solution. If \(n \) is not a power of 2, let \(m \) be the smallest power of 2 that is larger than \(n \). If \(A, B \) are the \(n \times n \) input matrices, obtain an \(m \times m \) matrix \(A' \) by padding \(m - n \) dummy rows and columns to \(A \) containing only 0 values, and similarly, an \(m \times m \) matrix \(B' \) from \(B \). Calculate \(A'B' \) in \(O(m^{2.81}) = O((2n)^{2.81}) = O(n^{2.81}) \) time. Then, the matrix \(AB \) can be obtained by discarding the last \(m - n \) rows and columns from the matrix \(A'B' \).