Strongly Connected Components

\[G = (V, E) \] directed graph

SCC: A subset \(S \subseteq V \) s.t.

1. For any \(u \in S \), \(\exists \) a path in \(G \) from \(u \) to every other vertex in \(S \).
2. (Maximality) We can't add any vertex to \(S \) without breaking 1.

\[\mathbf{Fact:} \text{If } S_1 \text{ and } S_2 \text{ are SCCs } \implies S_1 \cap S_2 = \emptyset \]

Problem: Find all SCCs.

Alg: \(O(|V| + |E|) \)

Step 1: Run DFS on \(G \)
- Record the vertex order of turning black

Step 2: Reverse all the edges' directions

Step 3: Run DFS on \(G^{rev} \) subject to the rules below:
 1. Start from the vertex with the largest label
 2. Always restart from the white vertex with the largest label.

\(O(|V| + |E|) \)