Dynamic Programming:
Accelerate the evaluation of recursive funs

Thm:

\[Z = \text{an arbitrary LCS of } x \text{ and } y \]
\[k = \text{the length of } Z \]

\[\text{If } x[n] = y[m] \Rightarrow \]
\[2[k] = x[n] = y[m] \]
\[Z[1:] = k-1 \]

\[= \text{an LCS of } x[1:n-1] \text{ and } y[1:m-1] \]

Input:
\[x: \text{a string of length } n \]
\[y: \text{a string of length } m \]

Subsequence
\[s \text{ is a subsequence of } t \]
\[\text{if at least one of the following holds} \]
\[\cdot s = t \text{ or } \]
\[\cdot \text{ we can convert } t \text{ to } s \text{ by deleting chars} \]

\[t = \text{ABCDEF} \]
\[s = \text{BD} \]
\[s = \text{BA} \]
\[s = \emptyset \]

\[\text{LCS length of } x \text{ and } y \]
\[\text{LCS of the trimmed } x \text{ and } y \]

Goal: Find a common subsequence of \(x \) and \(y \) with the maximum length

\[x = \text{ABCBDADB} \]
\[y = \text{BDCABA} \]

\[\text{LCS: } \text{BCBA}, \quad \text{BCAB} \]

\[x = \emptyset \]
\[y = \text{BDLABA} \]

\[\text{LCS: } \emptyset \]

\[\text{If } x[n] \neq y[m] \Rightarrow \]
\[\text{at least one of the following correct} \]
\[\cdot Z = \text{an LCS of } \]
\[x[1:n-1] \text{ and } y \]
\[\cdot Z = \text{an LCS of } \]
\[x \text{ and } y[1:m-1] \]

\[x = \text{ABCBDADB} \]
\[y = \text{BDCABA} \]

\[Z = \text{BCAB} \]

\[x = \text{ABCDEF} \]
\[y = \text{BDCABA} \]

\[Z = \text{BCAB} \]